
Abstract. The quest for a simulation scheme that com-
bines the preciseness of the PDEVS formalism with the
ease of use of standard simulation environments has
lead to the definition of NSA-DEVS, which has meanwhile
been shown to provide a useful basis for real-world appli-
cations. A set of modeling and simulation tools for NSA-
DEVS is freely available that usesMatlab as programming
language and the graphical editor of Simulink for the con-
struction of complex models from simple atomic compo-
nents.

To demonstrate that these tools are ready for gen-
eral discrete-event based applications, the implementa-
tion of a textbook example is presented in some detail.
It is shown that components that are necessary for a
transaction-oriented style can bemodeled easily, leading
to a comprehensiblemodel with a solidmathematical ba-
sis.

Introduction
For modeling and simulation using the discrete event

approach, practitioners can choose between a lot of

commercial simulation environments, which provide

users with a wide range of components and helpful tools

[1]. However, the behaviour of complex models can

sometimes be different than expected, especially be-

cause the documentation often does not provide all nec-

essary details. In such situations users generally build

a toolset of workarounds to make things work. But this

often leads to conceptual problems and does not deepen

the understanding of the precise behaviour of a model

[2].

On the other hand, one could start instead with a

precise description of the model and its components, us-

ing the well-established PDEVS formalism [3]. There

are even a few free tools that provide a user-extensible

set of DEVS-based components and a graphical user

interface for combining components to build complex

models [4]. But Preyser et al. have shown in [5] that

the way, how PDEVS uses transitory states (i. e. states

with lifetime 0), makes it hard to define some simple

reusable components, especially when they show Mealy

behaviour. Therefore they proposed a revised version of

the PDEVS formalism [6] that allows for the direct de-

scription of Mealy components.

However, this formalism still has problems with

chains of concurrent events [7]. Therefore it has

been extended to NSA-DEVS (Non-Standard Analysis
DEVS), which solves these difficulties by formally in-

troducing infinitesimal delays. This idea has been ana-

lyzed thoroughly in [8, 9] and used to implement a large

real-world example [10]. A corresponding simulation

environment has been built, which contains graphical

tools and a growing library of components. It is based

on Matlab and the graphical editor of Simulink and is

freely available from [11].

Since this article is primarily an invitation to use

these new tools for modeling and simulation in discrete-

event based studies, it concentrates on practical aspects,

not on the underlying mathematical formalism. After a

short definition of NSA-DEVS and a recapitulation of

previous results, the structure of the tools and the basic

workflow for concrete studies will be presented in some

detail. A basic example from Law’s textbook [12] will

illustrate how to implement and apply components for

standard entity-based applications.

1 Definition of NSA-DEVS

Like the PDEVS specification, the NSA-DEVS formal-

ism describes two types of models: atomic models,

which are the basic components, and coupled models,

which combine atomic and coupled models in a hierar-

chical structure.

An atomic model (cf. Fig. 1) is given by a set X of

input ports, each with a name, a similar set Y of out-

put ports, a set S of internal states and an input delay

time τ . Each state s has a lifetime, given by the time
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Figure 1: Dynamics of an atomic component.

advance function ta(s). The behaviour is given by the

output function λ , which defines output values y, and

the transition function δ , which computes the next in-

ternal state. Both functions depend on three values: the

current state s, the elapsed time e since the last transi-

tion and the input values x. When an external event, i.

e. a set x of input values, occurs at time t, λ is called

at time t + τ , followed by an immediate call of δ . An

internal event, i.e. a state change after a waiting time

ta(s), leads to a direct (undelayed) call of λ and δ .

The essential modification of NSA-DEVS is the in-

troduction of the input delay together with extended

time values: Introducing an infinitesimal value ε > 0,

times are defined as values of the form a+bε . The de-

lay time is usually defined as τ = ε and only changed

at rare occasions to guarantee a given order of events.

Furthermore, the lifetime of states can never be 0, but

an “immediate” (transitory) state change needs at least

an infinitesimal time τD.

A coupled model is basically a set of several lists

that describe the submodels used (atomic or coupled),

the input and output ports of the coupled model and all

connections between the submodels and from or to the

ports of the coupled model. Inputs of a coupled model

are immediate, i. e. they have no additional input delays.

2 Current Status of NSA-DEVS
The fundamental insight of [5] was that while the basic

PDEVS formalism is sufficient to model any discrete-

event based system, this is generally not possible with

every reusable component. After the definition of NSA-

DEVS one had therefore to show that it was up to this

task.

The first step was the definition of a corresponding

abstract simulator [8]. According to the DEVS philoso-

phy, the simulator is actually part of the definition of

the formalism. It adds a semantic layer to the static

definition of models by defining their exact behaviour.

In a next step [9], a set of standard examples was de-

fined formally and implemented using simple reusable

atomic components. A special point of interest was,

how one can define the infinitesimal parameters intro-

duced by NSA-DEVS in a simple and systematic way.

This was studied further with a large real-world exam-

ple in [10] consisting of 391 atomic and 88 coupled

models in 5 hierarchical levels. It contained 391 input

delay times τ and 12 additional delays τD for transi-

tory states. Its construction has been simplified by the

introduction of a graphical model builder, which uses

Simulink for the definition of coupled models.

In the course of these investigations, a basic set of

atomic models has been defined and implemented:

• sources (constant, several generators),

• math operations (add, gain, multiply, divide, com-

pare),

• logic operations and flipflops based on IEEE 1164,

• routing components (combine, distribute),

• a QSS-based integrator,

• a sink (toworkspace) for logging simulation re-

sults,

• common logistics components (queue, server,

batch, unbatch, terminator),

• statistical computations (getmax, utilization).

For all atomic models, corresponding NSA-DEVS

blocks are provided for the Simulink editor and assem-

bled in libraries. They make it possible to construct

coupled models using Simulink’s graphical capabilities

for positioning and connecting blocks and ports. In ad-

dition, block parameters can be set, among them the

values for the input delay τ and, where necessary, the

transition delay τD.

All delay values are predefined and usually set to the

default value τde f = ε . An exception are components

that emit trains of output values with infinitesimal time

distances, such as queue and combine atomics. They

need larger values for τD, which are predefined in the

library to τD = 2ε . This often works, but has to be en-

larged in special cases. If a special ordering is requested

for loops that contain several sequences of components,

one has to increase a few input delays to slow down

some paths [10].
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3 Implementation in Matlab
For the implementation of the example models, a set

of tools and a component library have been constructed

that are based on Matlab and the Simulink editor. Using

a simple example, we will describe the basic workflow

necessary to implement own models and running simu-

lations.

Listing 1: Atomic model am_add2.

1 classdef am_add2 < handle
2 properties
3 s
4 in1
5 in2
6 name
7 tau
8 debug
9 end

10 methods
11 function obj = am_add2(name, tau,

debug)
12 obj.s = "running";
13 obj.in1 = 0;
14 obj.in2 = 0;
15 obj.name = name;
16 obj.debug = debug;
17 obj.tau = tau;
18 end
19 function delta(obj,e,x)
20 if isfield(x, "in1")
21 obj.in1 = x.in1;
22 end
23 if isfield(x, "in2")
24 obj.in2 = x.in2;
25 end
26 end
27 function y = lambda(obj,e,x)
28 s1 = obj.in1;
29 s2 = obj.in2;
30 if isfield(x, "in1")
31 s1 = x.in1;
32 end
33 if isfield(x, "in2")
34 s2 = x.in2;
35 end
36 y.out = s1 + s2;
37 end
38 function t = ta(obj)
39 t = [inf, 0];
40 end
41 end
42 end

The atomic models are the basic building blocks.

They are implemented in Matlab as classes that contain

a constructor and the methods delta, lambda and

ta. A simple example is the class am_add2 for the

addition of two input values (cf. Listing 1) and shows

how to implement a Mealy component. On first sight, it

looks similar to its counterpart in a continuous environ-

ment, but the discrete-event nature leads to a very typ-

ical change: Since input values are defined only, when

an input event arrives, these values have to be stored

internally using properties in1 and in2. The prop-

erty s is used throughout the whole library to denote

“macroscopic” states, which is useful in more complex

atomics. Here it is simply set to a constant value. The

remaining properties store the values of external param-

eters, in this case the name of the component, the input

delay and a debug flag.

The constructor provides initial values for all prop-

erties, its parameter list defines the set of external pa-

rameters of the component. The delta method just

stores incoming values. The lambda method com-

putes the output value, which is given here by the sum

of the incoming or stored values. Finally the tamethod

returns the lifetime of the state, which is always given as

a two-dimensional vector [a, b], denoting the time

t = a+bε. In this case it is always infinite.

As a graphical representation of am_add2 a

Simulink subsystem with the name am_add2 is stored

in an NSA-DEVS library using the Simulink editor. In-

ternally it just consists of unconnected input and output

ports, which have the names of the ports that are used

inside the atomic model. Additionally, it has a mask that

defines the order and values of all parameters – except

name, which is set to the name of the actual component

– and short description and help texts (cf. Fig. 2).

Figure 2:Mask of the am_add2 atomic.

A coupled model, such as the simple example model

demo1 shown in Fig. 3, is defined by a Matlab function

that creates all its atomic and – using recursion – its cou-

pled components and all connections. To simplify this

tedious and error prone programming task, the user in-

stead builds the model from the Simulink representation

by copying the components from the library and con-

ASIM 2024 Tagungsband Langbeiträge, 27. Symposium Simulationstechnik, Univ. d. Bundeswehr München, 4.- 6. 9. 2024

213



necting them in the standard way. The toworkspace
models are used here to collect the simulation results.

In the example, their parameter varname is set to

"input" and "result" respectively.

Figure 3: Coupled model demo1.

The very simple script shown in Listing 2 can now

be used to create and run the model and plot the simu-

lation results.

Listing 2: Run script for model demo1.

1 function testDemo()
2 tEnd = 6;
3

4 model_generator("demo1");
5 out = model_simulator("demo1", tEnd);
6 plot_results(out, tEnd);
7 end

From the Simulink representation, the

model_generator creates the Matlab scripts

for all coupled models. Next the model_simulator
runs the model and collects all results in the struct

variable out. In the example model it contains the two

fields out.input and out.results, which each

have subfields t and y for the time and result values.

They can now be plotted easily with Matlab’s standard

functions.

A typical result is shown in Fig. 4. The

am_generator creates increasing numbers, starting

at t = 1, which are shifted by the constant value 3. The

output event at t = 0 probably comes unexpected. It is

due to the am_const atomic that sends its value only

once at the beginning. It is then stored in am_add2
and added to the initial value 0 stored for the other input

port. One should bear in mind that the coupled models

look like Simulink models, but the inner workings of

discrete-event models are still very different.

Discrete-event models can easily contain very hard

to find errors. To support the debugging process, the
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Figure 4: Plot of simulation results for the model demo1.

toolset supports three different levels, from simple time

stamps over debug outputs from individually chosen

atomic components to a complete output of internal

simulator messages. The last level creates a graphical

representation of all messages with a huge amount of

information and is usually only useful for simple test

models.

4 Example Model

In order to show that the methods and tools presented

can be used directly for transaction-based modeling, we

will implement a standard textbook example [12]. The

model describes a time-shared computer with N termi-

nals, which submit jobs of varying computing time de-

mands. These jobs are processed on a single CPU in

time-slices of length q using a round-robin scheduler

with a switching time tswap. When a job completes, a

new job is created after a waiting time. The waiting and

processing times are exponentially distributed random

variables with mean values tW and tS. After the com-

pletion of NJ jobs, the average response time and queue

length and the CPU utilization are computed.

A common method to implement such a model uses

entities describing the jobs, which contain attributes

such as the service time, i. e. the remaining process-

ing time, or the start time. Entity attributes are im-

plemented using struct variables. Four atomics have

been created to handle such entity attributes (cf. Fig.

5): am_adddata adds a set of fields denoting new

attributes to each incoming entity. If the input is not

already an entity (i. e. of type struct), an entity is cre-

ated with an additional attribute that stores the input

value. am_writedata changes the value of an entity
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attribute using values from other attributes. The chang-

ing function is defined as string parameter describing

an arbitrary Matlab command. am_readdata out-

puts the value of an attribute from the input entity and

am_deletedata deletes a set of attributes.

Figure 5: Atomic models for entity handling.

A few existing atomics have been modified to op-

tionally read an attribute from an incoming entity in-

stead of using a parameter or an input, among them the

server and distribute components. With these

atomics, one can create a coupled model for a server

with exponentially distributed service times tS (cf. Fig.

6): The addTS component adds an attribute to store the

value of tS, setTS sets the value of this attribute using

the Matlab command string

"out = -" + tS + "*log(rand());"

where the variable tS is the mean service time, given by

a mask parameter. The am_server component uses

the attribute of incoming entities to set the current ser-

vice time. Finally, deleteTS deletes the attribute for

the sake of better encapsulation. Using a different for-

mula for the computation of tS, which uses several at-

tributes, one can implement complex strategies for cal-

culating the service time.

Figure 6: Coupled model of a server with entity-dependent
service times.

A standard component in a transaction-based envi-

ronment is the N-server, which can serve up to N in-

coming entities, each with its own service time. Its ex-

act behaviour can be quite complicated and often is not

transparent to the user of a commercial program. The

NSA-DEVS description eliminates all ambiguities that

arise e. g. with several incoming and outgoing entities at

the same time. The diagram in Fig. 7 describes the basic

behaviour of the am_nserver atomic, where monitor-

ing compliance with the maximum server capacity has

been omitted for better readability. Among its proper-

ties are a list E of entities in the server, a corresponding

list σ of remaining service times and a list qOut of out-

going entities. An interesting difference to the simple

server is the possibility that several entities can be ready

at the same time. To handle this, the N-server moves all

finished entities to qOut, changes to the state emitting
and outputs them with a time delay of tD. According to

the rules stated above, tD is predefined as 2ε , but may

need to be enlarged in special applications. All details

defining the exact behaviour can be found in the open

source code of am_nserver.m [11].

idle
ta

working
ta min( )

E/E+

emitting
ta tD

E/E+

E/E+

(#qOut>1)/qOut-

(#qOut=1 & #E=0)
/qOut-

(#qOut=1 & #E>0)
/qOut-

/qOut+ := E-
E with =0

Figure 7: State diagram of the N-server component.

−→ state transition due to internal event

��� state transition due to external event

ta lifetime of the state

E external event (entity at input)

E+ insert entity in list E

E- remove entity from list E

#E number of entities in list E

With these atomics the three coupled mod-

els Terminals, CPU and the complete model

timeShared can be assembled easily. The

Terminals model (cf. Fig. 8) starts with a genera-

tor initialJobs that creates N entities at time 0

(more precisely at times n · tD) with consecutive IDs.

They get the attributes startTime, outPort and

remainingServiceTime, which is set to the in-

dividual service times. An N-server implements the

individual waiting times. The startTime is set to
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the current simulation time, using the utility function

get_time(), and the entities proceed to the CPU. When

a job is fully processed by the CPU, a corresponding ID

is sent as external event to the input of coupled model

Terminals, where it is promoted to a new job by the

atomic model constAdder.

Figure 8: Coupled model Terminals.

The CPU model (cf. Fig. 9) starts with a queue for

the waiting jobs, followed by a server representing the

CPU proper. Its service time is set to q+ tswap or less,

if the job is almost ready. After processing, the entity

attributes are updated: The time slice is subtracted from

the remainingServiceTime and outPort is set

to 1, if the job is ready, or 2 otherwise. The internal

feedback from the server to the queue signals to the

queue whether the server is available.

Figure 9: Coupled model CPU.

The complete model timeShared (cf. Fig. 10)

shows the loop around the CPU that jobs are sent,

until they have got their complete service time. The

distribute atomic uses the outPort attribute to

route finished jobs through the upper port. Finally the

response time is computed by subtracting the value of

attribute startTime from the current time and the en-

tity is terminated. The terminator counts the outgo-

ing jobs and sends this value back to the coupled model

Terminals, where new jobs are created. A stop
atomic halts the simulation, after NJ jobs have been pro-

cessed.

Figure 10: Complete coupled model timeShared.

Adding a few output blocks, one can gather enough

information to get a complete picture of the model be-

haviour. The information displayed in Fig. 11 is suffi-

cient to read off the waiting and service times of the jobs

and follow each job individually through the model.

This allows to thoroughly check the system behaviour.

Especially intuitive is the plot of the remaining time af-

ter the CPU, which nicely displays the loops of the jobs

around the CPU and the interaction of several jobs.

The component library contains the atomic

am_getmean that calculates the running mean value

of its input values, and the atomic am_utilization
for the computation of the CPU utilization. Adding

them to the timeShared model, one easily gets

all requested statistical data. A typical example with

N = 20 and NJ = 1000 is shown in Fig. 12. The results

are similar to those of the SimEvents version of this

model that had been used in [2], and consistent with

the results shown in [12].

5 Conclusions

The implementation of the timeShared model has

once again shown that NSA-DEVS is a conveniant basis

for component-based modeling of discrete-event sys-
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Figure 11: Detailed results of timeShared.

tems with a sound mathematical foundation. Especially,

not one of the delay parameters had to be changed from

its default value. This should be the typical case for sys-

tems with stochastical elements, where the probability

of concurrent events is quite small.

Furthermore, the toolset available freely from [11]

has proven its versatility: After finding and implement-

ing a suitable set of atomics for handling entities with

variable attributes and adding some standard atomics

to the library, the construction of a transaction-oriented

application proceeded by standard graphical methods.

We invite all modelers interested in discrete-event mod-

eling to try out these tools, ask for enhancements or

even provide useful new atomics to the library.

During the design of the free NSA-DEVS simula-

tor and the library, the focus has mainly been on cor-

rectness and simplicity. This shows, when measuring

its performance: The simulation of timeShared with

N = 40 and NJ = 1000 has a runtime of around 45 sec-

onds on a recent PC platform, while the corresponding

SimEvents version needs less than 2 s. Of course, the

comparison is not quite fair, since SimEvents compiles

the Matlab code before a run. Nevertheless, there is def-

initely large potential for improvement by trading ele-

gance of construction for runtime performance and by

generally reducing the number of messages sent.

With the presented tools and methods, one can fi-

nally tackle the questions that have been raised in [2]:

What are the shortcomings of current imple-

mentations? Which concepts or components

are missing? How could a reasonable set of
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Figure 12: Statistical results of timeShared.

components be defined?

The atomic models for entity handling and the N-server

introduced above are practical examples, how to pre-

cisely define fundamental building blocks due to their

underlying NSA-DEVS based formulation. Another

step along these lines would be the introduction of ver-

satile queue models that are capable of supporting all

the applications denoted in the ARGESIM benchmark

C22 [13]. To cite [2] once again:

For the advancement of transaction-based

modeling it is vital that it is based on a thor-

ough theoretical analysis to reveal the fun-

damental abstractions and basic components

that are necessary.

This is true more generally for all discrete-event based

modeling. NSA-DEVS and corresponding tools seem

to be a promising path to promote such a program.
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