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Abstract. Flatness-based control design is a well es-
tablished method to generate open-loop control signals.
Several articles discuss the application of flatness-based
control design for (reaction-) diffusion problems in vari-
ous scenarios. Beside the pure analytical derivation also
the numerical computation of the input signal is crucial
to yield a reliable trajectory planning. Therefore, we de-
rive the input signal step-by-step and describe the influ-
ence of system and controller parameters on the compu-
tation of the input signal. In particular, we benchmark the
control design of the one-dimensional heat equationwith
Neumann-type boundary actuation for pure aluminum
and steel 38Si7, and discuss the applicability of the found
input signals for realistic scenarios.

1 Introduction

The flatness-based control method is an open-loop tech-

nique to steer the system output along a reference tra-

jectory [1]. In case of finite-dimensional linear and

nonlinear systems the input signal u(t) is found by a

finite number of derivatives of a (differentially flat) out-

put which equals the reference signal. This approach is

extended to infinite-dimensional and distributed param-

eter systems where theoretically an infinite number of

derivatives of output signal y(t) is necessary to compute

the input signal u(t), see [2, 3, 4]. However, for prac-

tical reasons we can only consider a finite number of

derivatives of the output signal. Thus, we need to show

that the computation of input signal u(t) converges for a

certain number of derivatives of y(t). In general, this es-

timation of convergence is not trivial because the com-

putation of u(t) depends on system and control parame-

ters. A related approach about the controllability of the

heat equation with a finite number of derivatives of y is

discussed in [4].

In this contribution, we assume a one-dimensional

linear heat equation with Neumann boundary actuation

Input u

Output yLength L

Figure 1: One-dimensional rod with heat input (left) and
temperature measurement (right).

as depicted in Fig. 1 to discuss the impact of system

and control parameters on the computation of input sig-

nal u(t). For this purpose, we compare pure aluminum

and steel 38Si7 to exemplify our findings. They differ in

their material properties: thermal conductivity λ , spe-

cific heat capacity c and density ρ . Regarding the con-

trol parameters, we design the reference trajectory as a

smooth step which is configured by the transition time

and the steepness [5]. In each step of the analysis, we

evaluate numerically the significance of the system and

control parameters on the final control signal. Hence,

we show the transition from a pure analytical towards

a simulation-based control design, which enables us to

distinguish whether or not a control signal is indeed ap-

plicable for a system.

In section 2 we introduce the flatness-based model-

ing for the one-dimensional heat equation and derive in-

put signal u(t). The influence of the system parameters

are analyzed in section 3. The trajectory planning prob-

lem and the subsequent discussion of the control pa-

rameters are described in section 4 and 5, respectively.

Finally, in section 6 we present the simulation results of

the open-loop system and review the applicability for

realistic scenarios.

2 Flatness-based Control

We assume a one-dimensional heat conduction model

as portrayed in Fig. 1 which is described by the linear
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equation

ϑ̇(t,x) = α
∂ 2

∂x2
ϑ(t,x) (1)

for (t,x) ∈ (0,T )× (0,L) and the Neumann boundary

conditions as actuation on the left side

u(t) = λ
∂
∂x

ϑ(t,x) ·�n0

∣∣∣∣
x=0

, (2)

and thermal insulation on the right side

0 = λ
∂
∂x

ϑ(t,x) ·�nL

∣∣∣∣
x=L

(3)

where the outer normal vectors are known as �n0 = −1

and �nL = 1. Here, we denote the temperature as ϑ ,

the thermal conductivity as λ > 0 and the diffusivity

as α = λ
c ρ with specific heat capacity c > 0 and den-

sity ρ > 0. This heat conduction model is strongly

simplified because in real world scenarios, often we

have to consider two- or three-dimensional heat con-

duction with temperature-dependent material proper-

ties and probably thermal emissions consisting of linear

heat transfer and nonlinear heat radiation towards the

environment, see also [6, 7]. However, such realistic

heat conduction scenarios lead to a much more com-

plex mathematical discussion which is out of scope of

this contribution, and the presented control method and

its numerical analysis might not be applicable anymore.

The initial temperature distribution is arbitrarily defined

by

ϑ(0,x) = ϑ0(x)

for x ∈ [0,L] and the temperature is measured on the

right boundary as

y(t) = ϑ(t,L). (4)

As known from the literature [2, 3, 4] the heat equation

can be represented by a power series approach. So, we

define power series

w(t,x) :=
∞

∑
i=0

wi(t)
(L− x)i

i!

and find its derivatives with respect to position x as

∂
∂x

w(t,x) = −
∞

∑
i=0

wi+1(t)
(L− x)i

i!
and (5)

∂ 2

∂x2
w(t,x) =

∞

∑
i=0

wi+2(t)
(L− x)i

i!
.

We model heat equation (1) in terms of

ẇ(t,x) = α
∂ 2

∂x2
w(t,x),

identify both sides by its power series expressions as

∞

∑
i=0

ẇi(t)
(L− x)i

i!
= α

∞

∑
i=0

wi+2(t)
(L− x)i

i!

and yield identity

ẇi(t) = α wi+2(t). (6)

Next, we apply the information of both boundary sides

on identity (6) to derive the input signal. Firstly, we

consider the output signal (4) as

y(t) = w(t,L) =
∞

∑
i=0

wi(t)
0i

i!
= w0(t)

which implies di

dti y(t) = di

dti w0(t) = α iw2i with identity

(6). Secondly, the boundary condition on the right side

(3) is formulated as

λ
∂
∂x

w(t,L) =−λ
∞

∑
i=0

wi+1(t)
0i

i!
=−λw1(t) = 0

and we find di

dti w1(t) = α iw2i+1 ≡ 0. Thus, identity (6)

is described by the sequences

w2i(t) = α−iy(i)(t) and w2i+1(t) = 0 (7)

for all n ∈ {0,1, . . . ,∞}. In the definition of boundary

actuation (2) we insert Equation (5) to derive the input

signal u(t) as

u(t) = −λ
∂
∂x

w(t,0) = λ
∞

∑
i=0

wi+1(t)
Li

i!

and further with i → 2i+1 and Equation (7) as

u(t) = λ
∞

∑
i=0

L2i+1

α i+1

1

(2i+1)!
y(i+1)(t). (8)

3 Influence of System
Parameters

We are interested in the sequence values of series (8) be-

cause for implementation reasons we need to how much
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memory has to be reserved for the computation of u and

at which iteration i the summation can be stopped. The

power series to compute input signal u(t) can be sepa-

rated in sequence

ηi =
L2i+1

α i+1

1

(2i+1)!
. (9)

and the derivatives of the (desired) output signal

y(i+1)(t). In this section we discuss the influence of

the physical properties length L and diffusivity α on se-

quence ηi, and in section 5 we analyze the parameters

of (target) output y(t) and its derivatives.

Sequence ηi is positive for all i ∈ {0,1, . . . ,∞} as

we assume L > 0, α > 0, and has a crucial influence

on the computation of the input function u because it

scales the derivatives y(i+1). Thus, we need to know the

approximate values of ηi. We use a rescaled version of

sequence (9) as

η̃i :=

(
L2

α

)i+1
1

(2i+1)!
=

γ i+1

(2i+1)!
= L ηi

where γ := L2

α to show that ηi and η̃i increase up to

some index i and decrease afterwards to zero. Increas-

ing iterator i by one we yield

η̃i+1 =
γ [i+1]+1

(2[i+1]+1)!

=
γ i+1

(2i+1)!

γ
(2i+2)(2i+3)

= η̃i βi

where βi =
γ

(2i+2)(2i+3) and we notice

η̃i+1

η̃i
> 1 ⇔ βi > 1

and
η̃i+1

η̃i
< 1 ⇔ βi < 1.

Due to the definition of η̃ this concept holds also for the

original sequence (9) as ηi+1 = βi ηi. So, the maximum

value of η̃i and ηi and its corresponding iterations imax
depend only on γ . For example, if we assume γ = 100

then γ < (2i+ 2)(2i+ 3) holds for i ∈ {1,2,3} and we

find the maximum value η̃4 =
1005

9! ≈ 27557.

Example: Comparison Aluminum and Steel

For our numerical evaluations we consider a rod of

length L = 0.2 for two case scenarios: a rod made of

pure aluminum [8] and a rod made of steel 38Si7 [9].

The physical properties of both materials are listed in

Table 1. For aluminum we have γal ≈ 410 and for steel

38Si7 we have γst ≈ 3588. The sequences ηal,i and ηst,i

and their ratios
ηal,i+1

ηal,i
and

ηst,i+1

ηst,i
which describe evo-

lution of the sequences by iteration are portrayed in

Fig. 2 in semi-logarithmic scaling. We find that in-

equality
ηi+1

ηi
> 1 or equally log10

(
ηi+1

ηi

)
> 0 holds

in case of aluminum for i ∈ {1, . . . ,8} and in case of

steel i ∈ {1, . . . ,28}. Thus the maximum values of ηi
for aluminum and steel are calculated by

ηal,9 =
L19

α10
al 19!

≈ 5.53 ·109

and

ηst,29 =
L59

α30
st 59!

≈ 1.59 ·1027.

As both sequences ηal,i and ηst,i reach such enor-

mous maximum values, computational issues related to

big numbers and data types have to be considered in the

implementation process.

Moreover, sequence log10(ηal,i) drops below zero

for i > 27: ηal,28 ≈ 0.73, log10(ηal,28) ≈ −0.13; and

log10(ηst,i) drops below zero for i > 82: ηst,83 ≈ 0.13,

log10(ηst,83)≈−0.87 (not displayed in Fig. 2).

4 Trajectory Planning

According to [3, 5] we consider a transition from one

fixed operating point to the next one as

y(t) = y0 +Δy Φω,T (t) (10)

Table 1: PHYSICAL PROPERTIES

λ ρ c α = λ
ρc

Aluminum 237 2700 900 9.75 ·10−5

Steel 38Si7 40 7800 460 1.11 ·10−5
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Iteration i
0 4 8 12 16 20 24 28 32 36 40

lo
g

10
(

i)

10

5

0
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15
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25

Aluminum
Steel 38Si7

(a) Sequence ηi

Iteration i
0 4 8 12 16 20 24 28 32 36 40

lo
g

10
(

i+
1/

i)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Aluminum
Steel 38Si7

(b) Ratio ηi+1/ηi

Figure 2: Sequence ηi (top) and ratio ηi+1
ηi

(bottom) for
aluminum and steel 38Si7.

where Δy = y f − y0, and with transition function

Φω,T (t) =

⎧⎪⎪⎨
⎪⎪⎩

0 t ≤ 0,

1 t ≥ T ,∫ t
0 Ωω,T (τ)dτ∫ T
0 Ωω,T (τ)dτ

t ∈ (0,T )

which uses the integral of the bump function

Ωω,T (t) =

{
0 t /∈ [0,T ],

exp
(
−1/

(
[1− t

T ]
t
T

)ω
)

t ∈ (0,T ).

Parameter ω steers the steepness of transition Φω,T and

is chosen such that the Gevrey order go = 1+ 1
ω < 2

or equally ω > 1. A small value of ω , e.g. ω = 1.1
means a rather flat transition, whereas a large value, e.g.

ω = 3.0 means a quite steep transition, as depicted in

Fig. 3. To compute the input signal u(t) in Equation (8)

we only need to find the derivatives

di

dti y(t) = Δy Φ(i)
ω,T (t) (11)

where the derivatives of transition Φω,T are calculated

as

Φ(i)
ω,T (t) =

Ω(i−1)
ω,T (t)

Ω̂ω,T
for t ∈ (0,T ) (12)

and Φ(i)
ω,T (t) = 0 for t /∈ (0,1), using integral

Ω̂ω,T :=
∫ T

0
Ωω,T (τ)dτ . (13)

In Fig. 3 trajectory Φω,T (t) and its first derivative

are portrayed for varying ω ∈ {1.1,1.5,2.0,2.5,3.0}.

The derivatives Φ(i)
ω,T (t) can be computed symbolically

using for example computer-algebra systems (see for

example the MATLAB implementation [10]), numeri-

cally (which we do not recommend here). In this con-

tribution, we compute the derivatives Ω(i)
ω,T with the

JULIA library BellBruno.jl [11]. We note without a

proof that an increasing order of differentiation of Ω(i)
ω,T

leads to stronger oscillations because bump function

Ωω,T is a function composition and smooth as Ωω,T ∈
C inf((0,T )), see also [2].

5 Influence of Control
Parameters

The configuration of transition Φω,T and its derivatives

are mainly driven by two parameters: final time T and

exponent ω . In this section, we apply the L2 norm

‖ f‖L2 =

√∫ T

0
| f (t)|2dt

on di

dti Ωω,T (t) to unveil the influence of final time T and

exponent ω on the computation of input signal (8). Not-

ing the input signal with sequence ηn as

u(t) = λ
∞

∑
i=0

ηi y(i+1)(t) =
λ Δy
Ω̂ω,T

∞

∑
i=0

ηi Ω(i)
ω,T (t)
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Figure 3: Trajectory Φω,T (top) and its first derivative
(bottom) with T = 100 seconds and varying
ω ∈ {1.1,1.5,2.0,2.5,3.0}.

using identities (11,12,13), we find the L2 norm of u(t)
as

‖u(t)‖L2 =

∥∥∥∥∥ λ Δy
Ω̂ω,T

∞

∑
i=0

ηi Ω(i)
ω,T (t)

∥∥∥∥∥
≤ |Δy| λ

Ω̂ω,T

∞

∑
i=0

ηi

∥∥∥Ω(i)
ω,T (t)

∥∥∥
where we assume λ ,Ω̂ω,T ,ηi > 0. We see that the

power series is mainly driven by ηi (as discussed be-

fore) and derivatives Ω(i)
ω,T (t). Therefore, we are able to

describe the quantitative behavior of the input signal by

Iteration i
0 10 20 30 40

lo
g

10
(|

|
,T

(i)
||
/

,T
)

40
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20

10

0
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T=10
T=100
T=1000

(a) Fixed ω = 2.0, varying T

Iteration i
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lo
g

10
(|

|
,T

(i)
||
/

,T
)

40

30
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10

0

w=1.1
w=1.5
w=2.0
w=2.5
w=3.0

(b) Fixed T = 1000, varying ω

Figure 4: Norm of Ω(i)
ω,T with fixed ω = 2.0 (top), and fixed

T = 1000 (bottom).

evaluating sequence

μi :=
λ |Δy|
Ω̂ω,T

ηi

∥∥∥Ω(i)
ω,T (t)

∥∥∥
L2

. (14)

Scaled norm ‖ di

dti Ωω,T (t)‖L2/Ω̂ω,T is portrayed in Fig-

ure 4 in logarithmic scaling for two scenarios: fixed

ω = 2 and varying T ∈ {10,100,1000}; and fixed

T = 1000 and varying ω ∈ {1.1,1.5,2.0,2.5,3.0}. One

notes that an increasing value only of final time T leads

to a reduction of ‖Ω(i)
ω,T (t)‖/Ω̂ω,T , the influence of

steepness ω may not be so clear here.

Furthermore, we take advantage of sequence μi to

find a suitable maximum iteration number imax to termi-

nate the power series of u(t) in Equation (8). Sequence

μi consists of ηi as defined in Equation (9) and so we
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Iteration i
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(a) Sequence μi as in (14)

Iteration i
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j)
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{1
1
,.
..
,i}
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Steel 38Si7

(b) μi/ max
j∈{1,...,i}

μ j

Figure 5: Sequence μi (top) and ratio μi
max

j∈{1,...,i}
μ j
(bottom) for

ω = 2.0 and T = 1000.

distinguish aluminum and steel 38Si7 as noted in Table

1). The different values of ηi for aluminum and steel

38Si7 as in Fig. 2 lead to different values of μi: se-

quence μi approaching zero faster in case of aluminum

than steel 38Si7 as depicted in Fig. 5 (a). Introducing

the ratio
μi

max
j∈{1,...,i}

μ j
we find that the sequence elements μi

vanish in case of aluminum for iterations approximately

above i = 5 whereas in case of steel 38Si7 it takes at

least i = 12 iterations - as portrayed in Fig. 5 (b).

The evaluation of μi and ratio
μi

max
j∈{1,...,i}

μ j
unveils two

facts about the generation of input signal u(t). Compar-

ing the results for aluminum and steel 38Si7, we find

in case of aluminum that only the very first derivatives

of Φω,T are weighted by ηi and higher order derivatives

have almost no influence on the computation of u(t).

Whereas in case of steel 38Si7 the weights of deriva-

tives increase up to the fifth derivative so higher order

derivatives (which tend to oscillatory behavior) influ-

ence the found input signal, too. We find an approxima-

tion of the signal input

u(t)≈ λ Δy
Ω̂ω,T

N

∑
i=0

ηi Ω(i)
ω,T (t) =: uN(t) (15)

where N ∈ N≥0 denotes the upper limit of iterations.

Following the previous ideas, in case of aluminum a

small value of N, e.g. N = 7, suffices to generate a

good approximation. However, for steel 38Si7 we need

a higher number of iterations, e.g. N = 15. The progress

of input signals for aluminum with N ∈ {1,3,7} and

steel 38Si7 with N ∈ {5,10,15} are presented in Fig.

6. These results confirm our previous analysis that the

input signal needs more series elements for steel 38Si7

than for aluminum, and this leads the stronger oscilla-

tions in Fig. 6 (b) because higher derivatives of trajec-

tory Φ(i)
ω,T (t) are necessary. In a nutshell, we find four

important parameters which influence the input signal:

length of rod L and diffusivity α which define sequence

ηn, and final time T and steepness ω which influences

the derivatives of trajectory Φω,T - and thus also the

necessary number of summation iterations.

6 Simulation Results

In this section we compare the computed input signals

and the resulting heat conduction simulation for alu-

minum and steel 38Si7. As above we assume the phys-

ical properties as listed in Table 1 and the trajectory pa-

rameters T = 1000 seconds and ω = 2.0. So, the inte-

gral of the bump function as in identity (13) is found as

Ω̂ω,T ≈ 17.06 ·10−6. Further, we assume an initial tem-

perature ϑ0(x) = 300 Kelvin which shall be increased

by Δy = 100 Kelvin. A maximum iteration number of

N = 40 is considered for approximation (15) in case of

both scenarios. As explained in Section 5 lower values

than N = 40 are also sufficient but it may rather imi-

tate a summation until N = ∞. Heat equation (1) is dis-

cretized in space using finite differences with 101 grid

points and is simulated using a Runge-Kutta numerical

integration method for stiff systems, see [12].

The input signals and the resulting temperatures are

illustrated in Fig. 7 for aluminum (a,c) and steel 38Si7

(b,d). In both cases the output, meaning the temperature

at x = 0.2 meter, follows the reference and reaches 400
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Figure 6: Progress of approximated input signals uN for
aluminum (top) and steel 38Si7 (bottom) with
T = 1000 and ω = 2.

Kelvin. So, from a pure mathematical point of view the

input signals are computed correctly for both scenar-

ios. However, from a physical point of view we need

to discuss the input signals and the resulting tempera-

tures rather critically. Beside the fact that it may not be

possible to apply negative input signals, e.g. if the ac-

tuator offers only heating and not cooling, it is in fact

not possible to reach temperatures below zero Kelvin as

portrayed for steel reference in Fig. 7 (d). We highlight

that the strong oscillations of the input signal for steel

38Si7 in Fig. 7 (b) lead to the unrealistic temperature

evolution in Fig. 7 (d). Therefore, the control parame-

ters final time T and steepness ω have to be readjusted

to decrease the necessary number of series elements, to

yield a lesser or no oscillating input signal and a realiz-

able temperature evolution.

Conclusion & Discussion

In this article we presented the computation of input sig-

nals for trajectory planning of a one-dimensional heat

equation using flatness-based control design. We found

in our analysis of the influence of system and control

parameters on the computation of the input signal that

different material properties (aluminum, steel 38Si7) re-

sult in completely different input signals and open-loop

dynamics - even if all other parameters (length of rod,

final time, steepness of transition) are the same. We

demonstrate that strictly following the flatness-based

control design may not lead to an physically realizable

input signal even if the series in Eq. (8) converges.

Thus, we recommend to simulate the heat equation with

input signal to gain trustworthy arguments for the appli-

cability of the computed flatness-based input signal. We

motivate further research on the proposed approach for

realistic scenarios in two and three dimensions includ-

ing thermal convection and radiation.

Source Code

The source code is developed in JULIA programming

language [13] and is available on GitHub and Zenodo:

[14]. We implemented the simulations with the JULIA

libraries OrdinaryDiffEq.jl [15] for the numerical inte-

gration in time of the spatially approximated heat equa-

tion, and Makie.jl [16] to create the figures.
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Figure 7: Input signals and the resulting temperatures at position x ∈ {0.05,0.1,0.2}.
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