
Comparing Different Pruning Strategies for the
Evaluation Task of Virtual Stochastic Sensors

Dávid Bodnár1*, Claudia Krull1

1Institut für Simulation und Graphik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2,
139106 Magdeburg, Germany; *david.bodnar.ovgu@gmail.com

Abstract. Virtual Stochastic Sensors calculate statisti-
cally relevant estimates in indirectly observable discrete
stochastic systems. This is done by the proxel-based
analysis that aims to reconstruct the relevant part of the
state spacewith an iterative process. Strategically remov-
ing non-relevant proxels from the analysis (pruning) to
reduce runtime overhead might potentially affect the re-
sults. And while the impact on the decoding problem has
already been analysed in detail, the effect on the evalua-
tion problem was not yet discussed.

The paper discusses three pruning strategies and
compares their properties in case of the evaluation task.
The theoretical statements are empirically proven using
a car rental agencymodel in form of a Conversive Hidden
non-Markovian Model.

The results show that in case of well chosen param-
eters all three pruning strategies are able to reach the
same evaluation probability. The major difference be-
tween the strategies is due to their runtime properties
which need to be carefully aligned with the use-case to
reach optimal behavior. Based on the results the fixed
number of proxels pruning strategy provides highly pre-
dictable execution time, while the fixed threshold prun-
ing is very good at discovering a broader spectrum of the
state space. The variable pruning is a very good trade-off
between the previous strategies enabling lower thresh-
olds and thorough state space analysis whilemaintaining
acceptable execution times at the cost of more complex
parametrisation.

Keywords: Virtual Stochastic Sensor, Hidden non-
Markovian Model, Proxel-based Simulation, Pruning,
Evaluation

Introduction

Virtual Stochastic Sensors (VSSs), introduced in [1],

utilize the proxel-based analysis [2] to analyse partially

observable discrete stochastic systems. The proxels,

which represent a given system state at a given point

in time, build a so-called proxel tree to reconstruct and

represent the relevant part of the state space during the

analysis. The insignificant part is pruned away.

There are different pruning strategies to define what

is insignificant. In this paper three of them, fixed thresh-

old pruning, fixed number of proxels pruning and vari-
able pruning, will be discussed in detail. Similarly

to [3] we aim to give an overview of the influence of

the different pruning startegies on the evaluation results

of VSSs. This is motivated by the generalisation and

further development of the Change Adaptation Algo-

rithm (CAA) described in [4].

As in [3], this paper utilizes the same car rental ser-

vice model, presented in [5], for the evaluation. In this

model, customers arrive in a premium or ordinary queue

based on their membership. They use the same door

for entering and leaving the shop area and this door is

being observed (opening creates a signal) by the anal-

ysis. A single employee is serving both queues. Pre-

mium customers have priority over ordinary ones, but a

customer is always served to the end if the processing

has been started. Both queues are limited to 50 cus-

tomers. Figure 1 shows the Augmented Stochastic Petri

Net (ASPN) [5] of the system. ASPNs are modified

Petri nets [6] that can model the emission of symbols

when a transition fires. This model will also be used as

an example in the following to enlighten the different

concepts and tools used in this paper.

Figure 1: Car rental service Example as ASPN

This paper compares the three major pruning strate-

gies in theory and using the above presented experi-

ASIM 2024 Tagungsband Langbeiträge, 27. Symposium Simulationstechnik, Univ. d. Bundeswehr München, 4.- 6. 9. 2024

ARGESIM Report 47 (ISBN 978-3-903347-65-6), p 113-120, DOI: 10.11128/arep.47.a4704 113



ment for the evaluation problem of Conversive Hidden

non-Markovian Models (CHnMMs). The results show

that after a given threshold there is no significant differ-

ence in the resulting probabilities, however, other major

properties vary for each strategy so choosing one or the

other for a given problem will always depend on the

use-case.

1 Related Work

Virtual Sensors (VSs) [7] aim to collect system infor-

mation that is hard or expensive to obtain in a direct

way. If we combine them with stochastic processes a

so-called VSS can be constructed which calculates sta-

tistically relevant estimates of system paramters that are

similarly hard, inefficient and/or expensive to measure.

In this section, an introduction will be provided to

such a stochastic process, the so-called CHnMM [8]

and its solution algorithm, the proxel-based analysis.

Additionally, proxel merging will be discussed.

1.1 Conversive Hidden non-Markovian Model

The concept of CHnMMs originates from the well-

known Hidden Markov Models (HMMs) [9], where a

hidden or partially hidden system is analyzed by proba-

bilistic symbol emissions. This idea was extended to

Hidden non-Markovian Models (HnMMs) by [10] to

overcome the limitations of the discrete-time Markov

chain in the background. HnMMs use arbitrary contin-

uous distribution functions to describe the state changes

and to create time dependence between them.

Similarly to HMMs, the HnMMs also try to solve

the evaluation and the decoding problem. The decod-

ing problem, finding the most probable generator state

sequence to a given trace, and the impact of the differ-

ent pruning strategies on it have already been discussed

in [3]. This paper is focusing on the evaluation prob-

lem, e.g. finding the probability that a trace has been

generated by a given model.

A specific subclass of HnMMs are the so-called

CHnMMs which allow additional performance opti-

mizations of the algorithm due to the fact that ev-

ery state change results in an observable symbol emis-

sion. Those optimizations are powerfull enough to

make CHnMMs the perfect experiment environment to

test and verify new ideas in an efficient way. That is

why this paper also limits its scope to CHnMMs.

In case of the presented car rental shop the hidden

internal system state is the length of (the number of

customers in) the ordinary and premium queues. Every

state change (a customer entering or leaving the queue)

results in a door opening (signal emission). This effec-

tively means that by solving the evaluation problem, the

goal of this project is to find the probabilty of a given

door-opening signal protocol.

1.2 Proxels-based analysis

CHnMMs also need a solution algorithm. However, in-

stead of using the forward algorithm [11] or the Viterbi

algorithm [12] the so-called proxel-based analysis [2]

can be used. The technique utilizes the encapsulation

of a possible system state description (system state m,

age vector τ , the probability of that state p, a timestamp

t, etc.) into a so-called proxel object as it can be seen in

Equation 1. One can use a collection of those proxels

to describe all possible system states at a given point in

time, including the ages of the relevant non-Markovian

transitions. Then by creating a parent-child relationship

between the timesteps one can derive the possible sys-

tem states for the future timesteps in an iterative way.

Of course, the proxel definition can be extended to carry

additional information through the analysis. Refering

back to the example model, a specific proxel represents

a given number of customers in the premium and ordi-

nary queues (m), the durations since the last customers

entered each queue and while one is being served (τ)
and the probability (p) of ending up in the represented

state at the current simulation time (t).

Px = (m,τ, p, t) (1)

The mentioned parent-child relation is described by

the Hazard Rate Function (HRF) in Equation 2 using

the Probability Density Function (PDF) f (τ) and the

Cumulative Distribution Function (CDF) F(τ) of a pos-

sible state change. The equation describes the current

state change rate for a given state change if this one has

been active for τ and has not happened yet. So in case of

our example model this translates to for example, what

is the probability of a customer service being finished

in this timestep, if he/she is being served right now. Or

similarly, what is the probability of the next customer

entering the shop now?

H(τ) =
f (τ)

1−F(τ)
(2)

ASIM 2024 Tagungsband Langbeiträge, 27. Symposium Simulationstechnik, Univ. d. Bundeswehr München, 4.- 6. 9. 2024

114



To keep the proxel tree at a reasonable size, very

unlikely proxels can be pruned from the tree. Different

strategies exist to perform this operation. They will be

further discussed in Section 2.

Proxel probabilities are represented on a logarithmic

scale to preserve precision as in case we represent them

on normal scale, they would disappear due to arithmetic

underflow very soon after the analysis was started.

1.3 Merging proxels

In case of the evaluation problem, we are not interesed

in the history of a given proxel, because we are only try-

ing to compute the probability of a given system state at

time t. This means that after a couple of timesteps af-

ter starting the proxel-based analysis we can find prox-

els in the proxel tree, that represent the same system

state, but they have been generated by different routes.

These proxels can be merged by adding their probabil-

ities (which are logarithmic probabilities, as stated be-

fore, represented by p̃1 and p̃2) using the Kingsbury-

Rayner formula [9] shown in Equation 3. By perform-

ing this merging operation one can keep the size of the

proxel tree under control very efficiently.

p̃1 +log p̃2 = p̃1 − ln
(

1+ e−(p̃2−p̃1)
)

(3)

The Kingsbury-Rayner formula additionally pro-

vides an opportunity to efficiently add probabilities that

are on a different magnitude.

An example of a merging opportunity is presented

in Figure 2, where the discovered state space of a three

state system (m0, m1, m2) is reperesented over three

timesteps. The two proxels marked with red at t = 2Δ
represent the same internal system state with different

probabilities but they were reached through different

routes, so they can be merged.

m0, 0

m2, 0

m0, 

m1, 0

m2, 0

m0, 2

m1, 0

m0, 0

m1, 

m0, 0

m2, 

t=0 t= t=2

Figure 2: Example of mergable proxels

In case of our concrete example this means that the

customer enter sequences (P - premium customer, O -

ordinary customer) "PPOPO" and "POPPO" can be rep-

resented by the same proxel, since in case of the evalu-

ation problem only the current system state is a subject

of interest.

Merging significantely reduces the number of exist-

ing proxels over time. This also means that much less

strict pruning configurations can be used than for exam-

ple in case of the decoding task. These will be shown

later in Section 3.2.

Until now, we have introduced CHnMMs and the

proxel-based analysis as two base concepts of our re-

search. We also gave a brief overview about the possi-

bility of merging as the main method to keep the proxel

tree under control in case of the evaluation problem. In

the next section the concept of pruning and the differ-

ent pruning strategies will be introduced as the main

reseach interest of this paper.

2 Pruning Strategies for
Evaluation

Pruning is a concept of the proxel-based analysis, in

which the algorithm classifies a part of the proxel tree

as irrelevant for further analysis and removes it. The

different strategies encapsulate a set of logical steps to

be performed on the proxel tree in order to identify and

prune the irrelevant proxels.

There are two major events that can render a proxel

based analysis infeasible. One of them is state space ex-

plosion, when the proxel tree grows exponentially and

reaches a state where the next step is enormously ex-

pensive to compute or the ressources of the computer

running the analysis are fully consumed. The other one

is the exact opposite, the proxel tree can die out. In this

case the remaining proxels, for example due to extreme

pruning, encounter an observed symbol that cannot be

emitted by their current system state and with that the

proxel becomes impossible and is removed from the

analysis. If all the proxels are removed from the tree,

the tree dies out. Merging and a pruning strategy needs

to be devised to prevent both of these extreme cases

from happening

As already mentioned at the end of the previous

section, merging does an excellent job at keeping the

proxel tree under control. But sooner or later the anal-

ysis reaches the point where additional intervention is

needed in the form of pruning. Still, merging makes it

ASIM 2024 Tagungsband Langbeiträge, 27. Symposium Simulationstechnik, Univ. d. Bundeswehr München, 4.- 6. 9. 2024

115



possible to use less strict pruning strategies than in case

of the decoding problem [3]. This also results in the fact

that state space explosions or died out proxel trees are

not common for simple models. However, with increas-

ing system complexity a state space explosion might oc-

cur, but it is extremely unlikely.

In this section a brief overview will be given of the

three investigated pruning strategies. But before diving

into the details, we should list the properties of a good

pruning algorithm. These are in case of the evaluation

problem in our experience, the following:

1. High proxel processing throughput

2. Small amount of lost (pruned) probabilty

3. Prevents state space explosion

4. Scales the proxel tree up and down depending on

how „interesting” the current part of the trace is

5. Guarantees predictable execution times

6. Is easily customizable for different needs

7. Is overall robust, which means that it does not react

very differently to similar traces

These criteria will be used to evaluate the different

pruning strategies.

2.1 Fixed Threshold Pruning

The fixed threshold pruning is a simple concept defining

a pruning probability threshold p(Ppruned,ti). Below that

value every proxel is considered to be irrelevant and is

then removed from the proxel tree. The threshold is de-

fined compared to the probability of the most probable

proxel max(p(Px,ti) in the proxel tree for a given time

ti. It is described by a ratio r as it can be seen in the

Equation 4. The parameter r is a freely selectable value

with the limits 0 < r ≤ 1.

p(Ppruned,ti)< r max(p(Px,ti)) (4)

This pruning strategy is the most vulnerable to state

space explosions and other instabilities as described in

[3]. However, combined with merging it is possible

to use extremely low pruning thresholds, as it will be

shown in Section 3.2.

This strategy scales the proxel tree overall well and

as a simple algorithm, it provides a high proxel process-

ing throughput. But due to the unpredictable number of

proxels in the proxel tree, the execution time has a high

fluctuaction when the threshold is low.

2.2 Fixed Number of Proxels Pruning

The fixed number of proxels pruning is another simple

strategy for keeping, as the name suggests, only a pre-

defined number of proxels at the end of every timestep

keeping the higher probability proxels and pruning the

less likely ones. This property is the major advantage of

the strategy, as it is very easy to parametrize and very

robust against disturbances. However, the algorithm it-

self has some drawbacks.

The optimal proxel storage in case of the evaluation

problem is a hash table [13], because due to the merging

described in Section 1.3 one wants to retrive proxels as

efficiently as possible. The cost of it is the hash tables’s

average search complexity, O(1). However, a hash table

cannot be sorted, so in order to perform the pruning,

one needs to put all the proxels into a sorted array-like

structure which is an additional overhead to the already

complex sorting operation of O(n log(n)) [13].

Of course, one can perform some implementation

tricks, like storing a pointer to the proxel in the proxel

storage instead of the object itself, to speed up the mov-

ing and sorting operation significantly. But in the end,

one still needs to perform the moving and sorting of the

entries and with a potentially higher number of proxels

to keep, these can become too expensive for the analy-

sis. Similarly, not all tricks might be universally univer-

sally available in every programming language.

This strategy provides a simple single parameter

customization and very predictable execution times, but

it fails to scale the proxel tree, so one really needs to find

the perfect parameter with this strategy before running

a long-time analysis.

2.3 Variable Pruning

Variable pruning was introduced in [4] due to the lim-

itations of the fixed threshold pruning in case of the

decoding problem. It is basically combining the pre-

viously discussed pruning strategies by creating a rela-

tionship between the current number of proxels in the

proxel tree and the pruning threshold. This is done by

defining a minimum number of proxels (rmin) - prun-

ing threshold (#Pmin) pair, which prune the really un-

likely proxels. Additionally, one selects a maximum

number of proxels (rmax) - pruning threshold (#Pmax)

ASIM 2024 Tagungsband Langbeiträge, 27. Symposium Simulationstechnik, Univ. d. Bundeswehr München, 4.- 6. 9. 2024

116



pair to drastically prune the tree if the proxel tree be-

comes too large. The two points must be connected by

a strictly monotonically increasing continuous function

(r(#Px,ti)) to guarantee a smooth transition between the

two behaviors. The definition is shown in Equation 5:

r =

⎧⎪⎨
⎪⎩

rmin if #Px,ti < #Pmin

r(#Px,ti) if #Pmin ≤ #Px,ti ≤ #Pmax

rmax if #Px,ti > #Pmax

(5)

Even though the strategy is slightly more complex

than the previous strategies due to the high factor of cus-

tomization (different minumum and maximum pairs,

different equations), it is a good trade-off between the

advantages and disadvantages of the previous strate-

gies. One can use overall much lower pruning thresh-

olds while maintaining high throughput, lower risk of

state space explosion and reducing the fluctuation of ex-

ecution time compared to the fixed threshold pruning.

3 Experiments

In this section, the previously discussed properties of

the different pruning strategies will be shown in an

empirical way. First the experiment setup and the

parametrization will be briefly discussed before de-

scribing the experiment results in details.

3.1 Experiment setup

A car rental service, presented in the introduction, was

fed with the same input data as presented in [3] previ-

ously to make the result easily comparable.

A Personal Computer (PC) equipped with an AMD

Ryzen 7 3800X and 64 GB of RAM has been used for

the experiment execution. The RAM was sufficient to

prevent swapping, which made the preformed exper-

iments easily comparable. The implementation code

utilized the C++20 standard and it was compiled using

GCC 11.4.0 with the highest optimization level enabled.

The application was containerized using Docker. The

PC was running Manjaro Linux with the kernel 6.1.69.

3.2 Parameter selection

The experiment has been run 1620 times for every given

pruning strategy with a defined parametrization, which

includes 162 different model parameters with 10 ran-

domly generated traces each. These models include

only stable models, further discussed in [5].

The different pruning strategies were parametrized

based on different logic. The fixed threshold pruning
strategy (abbreviated with „th” in the following fig-

ures) was tested with various thresholds in the range

of [1e−1,1e−150]. Similarly, a wide range of sizes

between [50,2500] were used to test the fixed number
of proxels pruning strategy (abbreviated with „size” in

the following figures). For the variable pruning (abbre-

viated with „var” in the following figures) five differ-

ent equations were used, all with the minimum thresh-

old (rmin) of 1e−300 for proxel tree sizes below 1000

(#Pmin), and a maximum threshold (rmax) of 0.1 above

proxel tree size of 100000 (#Pmax). All equations de-

scribe a mapping between the pruning threshold and the

logarithm of the current tree size in the following way:

n = log10 #Px,ti

r(n)1 = 10
log10 0.1−log10 10−300

log10 100000−log10 1000 (n−log10 1000)+log10 10−300

r(n)2 = 1074.5n2−446.5n+369

r(n)3 = 1049.5n2−246.5n−6

r(n)4 = 10−50.5n2+553.5n−1506

r(n)5 = 10−70.5n2+713.5n−1806

Figure 3 visualizes the previous equations between

the previously described minimum and maximum pairs

to make them easier to follow for the reader. Please be

aware that the x and the y axis are using logarithmic

scale.

1e+03 2e+03 5e+03 1e+04 2e+04 5e+04 1e+051e
−3

07
1e
−1

81
1e
−5

5

Variable pruning equations

Log number of proxels

Lo
g 

pr
un

in
g 

th
re

sh
ol

d

r1
r2
r3
r4
r5

Figure 3: Variable pruning equations

The different equations make it possible to scale the

variable pruning with different „speed” between the

ASIM 2024 Tagungsband Langbeiträge, 27. Symposium Simulationstechnik, Univ. d. Bundeswehr München, 4.- 6. 9. 2024

117



minimum and maximum values. As the results in the

next subsection will show, this was already enough to

reach significantly different behavior.

3.3 Experiment results

For easier representation, the experiment results were

visualized in the Figures 4 - 6 in a unified way. Yel-

low background („th” on the X-axis) marks the fixed
threshold pruning strategies with different thresholds in

scientific notation. Green background („size” on the X-

axis) marks the fixed number of proxels pruning strate-

gies with different fixed proxel tree sizes, while blue

background („var” on the X-axis) marks the variable
pruning strategies with different equation IDs.

During the tests, we did not experience any state

space explosions, even with extremely small pruning

thresholds. This means that the merging efficiently

eliminates this problem, however, this is not a proof that

in case of a more complex model we would not expe-

rience any problems with the fixed threshold pruning
strategy, as this is the most vulnerable strategy regard-

ing state space explosions.

Figure 4 visualizes the performance criteria of the

experiment. Here we see that the fixed threshold prun-
ing needs to deal with an extreme uncertainty regarding

the number of proxels with decreasing pruning thresh-

old. This leads to a similar fluctuation/variation in the

execution time. The variable pruning efficiently copes

with this problem while using a significantly lower min-

imal threshold. The fixed number of proxels pruning
maintains predictable and low execution times.

In case of the proxel processing efficiency (Figure

4, top right) the variable pruning and the fixed thresh-
old pruning with lower thresholds outperform the fixed
number of proxels pruning by about 25− 30%. This

results from the fact that sorting the proxel tree is an

operation that is hard to parallelize.

The last graph in the Figure 4 visualizes the prob-

ability lost through pruning. Please be aware that the

probabilities are visualized on a logarithmic scale. One

would like to minimize that in order to get the possi-

bly most complete analysis of the state space. How-

ever, the first steps in case of the analysis play a crucial

role in this case, because the proxel probabilities are de-

creasing drastically over the analysis time domain. This

means that the first pruned away proxels basically deter-

mine the amount of lost probability. As we can see in

the picture, the fixed number of proxels pruning has a

really high spread for these values. This shows that it

could potentially throw away important proxels. The

fixed threshold pruning copes with the problem well at

lower pruning thresholds. The variable pruning pro-

vides the best values with somewhat higher spread than

the fixed threshold pruning. This is the indicator of be-

ing a good trade-off between the two other techniques.

Evaluation tries to compute the probability that a

given trace has been generated by a given model. In-

terestingly enough, most of the strategies provided the

same result to that question as it can be seen in Fig-

ure 5. Only the fixed threshold pruning strategies with

the thresholds 1e−1 and 1e−2 failed to reach the same

results, but in these cases only 1 or 2 proxels survived

the timesteps on average. In case of the fixed pruning

threshold 1e−10, which is the first test case that came

to the common solution, on average about 35 proxels

survived the timestep after pruning, so we expect that

a fixed number of proxels pruning with values under 50

could have also reached this result.

Not being able to reach a better result by process-

ing more proxels has to do with the fact that the proxel

probabilities are represented on a logarithmic scale. At

the end of the analysis a subset of proxels became dom-

inant (they had significantly higher probabilities) over

the remaining proxels. That part of the proxel tree com-

putationally defined the results.

This means that there is a sweet spot in the com-

putation and with an optimal number of proxels one is

able to compute the end result of the analysis very ef-

ficiently. In our case this sweet spot is somewhere be-

tween 35− 50 proxels. However, this cannot be stated

universally, because more complex systems might have

a higher optimal proxel number. Generally said, with a

threshold based pruning strategy one can get to the opti-

mum more easily than with the fixed number of proxels
pruning strategy, because it is very hard to find the op-

timal number of proxels without performing multiple

experiments.

Another important aspect is to keep enough proxels

in the tree to support diversity and to prevent the proxel

tree from dying out if something very unexpected hap-

pens, for example due to very strong pruning all the ex-

isting proxels become impossible in the next timestep.

This quality can be visualized with the pruning ratio, so

which amount of the proxels are kept on average after

the pruning step. This can be seen in Figure 6.

Here we see that the strategies that failed to reach

the common probability result have thrown away more

than 50% of the proxels on average from timestep to

ASIM 2024 Tagungsband Langbeiträge, 27. Symposium Simulationstechnik, Univ. d. Bundeswehr München, 4.- 6. 9. 2024

118



0
50

0
10

00
15

00
20

00

Execution time

Ex
ec

ut
io

n 
tim

e 
[s

]

th
/1

e-
1

th
/1

e-
2

th
/1

e-
10

th
/1

e-
25

th
/1

e-
50

th
/1

e-
75

th
/1

e-
10

0
th

/1
e-

12
5

th
/1

e-
15

0
si

ze
/5

0
si

ze
/1

00
si

ze
/1

50
si

ze
/2

00
si

ze
/2

50
si

ze
/3

00
si

ze
/4

00
si

ze
/5

00
si

ze
/7

50
si

ze
/1

00
0

si
ze

/1
25

0
si

ze
/1

50
0

si
ze

/2
00

0
si

ze
/2

50
0

va
r/r

1
va

r/r
2

va
r/r

3
va

r/r
4

va
r/r

5 1e
+0

5
2e

+0
5

3e
+0

5
4e

+0
5

5e
+0

5
6e

+0
5 Number of processed proxels per time unit

N
um

be
r o

f p
ro

xe
ls

th
/1

e-
1

th
/1

e-
2

th
/1

e-
10

th
/1

e-
25

th
/1

e-
50

th
/1

e-
75

th
/1

e-
10

0
th

/1
e-

12
5

th
/1

e-
15

0
si

ze
/5

0
si

ze
/1

00
si

ze
/1

50
si

ze
/2

00
si

ze
/2

50
si

ze
/3

00
si

ze
/4

00
si

ze
/5

00
si

ze
/7

50
si

ze
/1

00
0

si
ze

/1
25

0
si

ze
/1

50
0

si
ze

/2
00

0
si

ze
/2

50
0

va
r/r

1
va

r/r
2

va
r/r

3
va

r/r
4

va
r/r

5

0e
+0

0
4e

+0
8

8e
+0

8

Number of processed proxels

N
um

be
r o

f p
ro

xe
ls

th
/1

e-
1

th
/1

e-
2

th
/1

e-
10

th
/1

e-
25

th
/1

e-
50

th
/1

e-
75

th
/1

e-
10

0
th

/1
e-

12
5

th
/1

e-
15

0
si

ze
/5

0
si

ze
/1

00
si

ze
/1

50
si

ze
/2

00
si

ze
/2

50
si

ze
/3

00
si

ze
/4

00
si

ze
/5

00
si

ze
/7

50
si

ze
/1

00
0

si
ze

/1
25

0
si

ze
/1

50
0

si
ze

/2
00

0
si

ze
/2

50
0

va
r/r

1
va

r/r
2

va
r/r

3
va

r/r
4

va
r/r

5 -1
40

0
-1

00
0

-6
00

-2
00

0

Lost probability

Lo
g 

pr
ob

ab
ilit

y

th
/1

e-
1

th
/1

e-
2

th
/1

e-
10

th
/1

e-
25

th
/1

e-
50

th
/1

e-
75

th
/1

e-
10

0
th

/1
e-

12
5

th
/1

e-
15

0
si

ze
/5

0
si

ze
/1

00
si

ze
/1

50
si

ze
/2

00
si

ze
/2

50
si

ze
/3

00
si

ze
/4

00
si

ze
/5

00
si

ze
/7

50
si

ze
/1

00
0

si
ze

/1
25

0
si

ze
/1

50
0

si
ze

/2
00

0
si

ze
/2

50
0

va
r/r

1
va

r/r
2

va
r/r

3
va

r/r
4

va
r/r

5

Figure 4: Quality Measures of Different Pruning Strategies
Note: Yellow background („th” on the X-axis) marks the fixed threshold pruning strategies with different thresholds. Green background („size” on the

X-axis) marks the fixed number of proxels pruning strategies with different sizes. Blue background („var” on the X-axis) marks the variable pruning
strategies with different equations.

-2
50

00
0

-1
50

00
0

-5
00

00

Evaluation probability

Lo
g 

pr
ob

ab
ilit

y

th
/1

e-
1

th
/1

e-
2

th
/1

e-
10

th
/1

e-
25

th
/1

e-
50

th
/1

e-
75

th
/1

e-
10

0
th

/1
e-

12
5

th
/1

e-
15

0
si

ze
/5

0
si

ze
/1

00
si

ze
/1

50
si

ze
/2

00
si

ze
/2

50
si

ze
/3

00
si

ze
/4

00
si

ze
/5

00
si

ze
/7

50
si

ze
/1

00
0

si
ze

/1
25

0
si

ze
/1

50
0

si
ze

/2
00

0
si

ze
/2

50
0

va
r/r

1
va

r/r
2

va
r/r

3
va

r/r
4

va
r/r

5

Figure 5: Probability of a given door protocol
Note: Information about the colors and abbreviations can be found in

the note below the caption of Figure 4

0.
5

0.
6

0.
7

0.
8

Pruning ratio

R
at

io
 o

f k
ep

t p
ro

xe
ls

 to
 a

ll 
pr

ox
el

s

th
/1

e-
1

th
/1

e-
2

th
/1

e-
10

th
/1

e-
25

th
/1

e-
50

th
/1

e-
75

th
/1

e-
10

0
th

/1
e-

12
5

th
/1

e-
15

0
si

ze
/5

0
si

ze
/1

00
si

ze
/1

50
si

ze
/2

00
si

ze
/2

50
si

ze
/3

00
si

ze
/4

00
si

ze
/5

00
si

ze
/7

50
si

ze
/1

00
0

si
ze

/1
25

0
si

ze
/1

50
0

si
ze

/2
00

0
si

ze
/2

50
0

va
r/r

1
va

r/r
2

va
r/r

3
va

r/r
4

va
r/r

5

Figure 6: Pruning rate with different prunings
Note: Information about the colors and abbreviations can be found in

the note below the caption of Figure 4

ASIM 2024 Tagungsband Langbeiträge, 27. Symposium Simulationstechnik, Univ. d. Bundeswehr München, 4.- 6. 9. 2024

119



timestep. Generally, this is caused by the relatively

small number of proxels. Of course, with the increasing

number of proxels the different strategies are keeping a

higher amount of proxels. This generally means also

higher fault tolerance toward very unlikely events in the

proxel-based analysis and also indicates higher robust-

ness for similar traces.

4 Discussion & Conclusion

The goal of this paper was to give a general overview of

different pruning strategies for the evaluation problem

and to compare their properties.

All three of the analyzed pruning strategies are suit-

able for the evaluation problem. Problems like state

space explosion or dying out proxel trees are very un-

likely, as merging keeps the proxel tree under control

enabling the use of less strict pruning strategies com-

pared to the decoding problem [3]. We have not en-

countered them during our experiments. This generally

also shows that the pruning strategy has a smaller im-

pact on the results in case of the evaluation problem, as

long as they are parametrized in a reasonable way.

There is generally an optimum where the proxel-

based analysis reaches the final evaluation result with

a minimum number of proxels. However, finding this

sweet spot is not trivial and it surely requires multiple

test runs, which is not always possible in the real world.

In case of all three strategies the parameters need

to be chosen carefully. But with a good rule of thumb

solution like „one should keep at least 50−100 proxels

on average, but one should aim for more” one should be

on the safe side to get a good general solution with ac-

ceptable execution times. However, for more complex

systems a higher number of proxels might be needed.

The fixed number of proxels pruning performs good

enough to be a robust solution if one values highly pre-

dictable execution times over other properties. How-

ever, the proxel processing throughput might be a lim-

iting factor. If the desired property of the analysis is

to explore the state space as thoroughly as possible,

one should use the fixed threshold pruning or tweak the

variable pruning to speed up the execution time and get

some additional advantages, like less lost probability,

more diverse proxel tree, etc.

From a practical point of view there is no real limi-

tation that would prevent the user from utilizing any of

these pruning strategies in an experiment with artificial

data or in real world use-cases.

References
[1] Krull C, Buchholz R, Horton G. Virtual Stochastic

Sensors: How to gain insight into partially observable

discrete stochastic systems. The 30th IASTED
International Conference on Modelling. 2011;.

[2] Lazarova-Molnar S. The Proxel-Based Method:
Formalisation, Analysis and Applications. Magdeburg:

Otto-von-Guericke-Universität. 2005.

[3] Bodnár D, Krull C. Comparing Different Pruning

Strategies for the Decoding Task using Virtual

Stochastic Sensors. In: The European Simulation and
Modelling Conference 2023, edited by Vingerhoeds R,

de Saqui-Sannes P. Toulouse: EUROSIS-ETI. 2023; pp.

37–42.

[4] Bodnár D, Krull C. Adapting to Change of Model

Transitions in Proxel Based Simulation of CHnMMs.

In: Proceedings Langbeiträge ASIM SST 2022, 26.
Symposium Simulationstechnik, edited by Breitenecker

F. Vienna: TU Wien. 2022; pp. 101–108.

[5] Krull C. Virtual Stochastic Sensors: Formal
Background and Example Applications: Reconstructing
the Behavior of Partially Observable Discrete and
Hybrid Stochastic Systems. Shaker. 2021.

[6] Bobbio A, Puliafito A, Telek M, Trivedi KS. Recent

Developments in Non-Markovian Stochastic Petri Nets.

Journal of Systems Circuits and Computers. 1998;

8(1):119–158.

[7] Wilson E. Virtual sensor technology for process

optimization. 1997. Presentation at the ISSCAC 1997.

[8] Buchholz R. Conversive Hidden non-Markovian
Models. Magdeburg: Otto-von-Guericke-Universität.

2012.

[9] Fink GA. Markov Models for Pattern Recognition.

London: Springer London. 2014.

[10] Krull C, Horton G. Hidden non-Markovian Models:

Formalization and solution approaches. 6th Vienna
International Conference on Mathematical Modelling.

2009;.

[11] Rabiner L. A tutorial on hidden Markov models and

selected applications in speech recognition.

Proceedings of the IEEE. 1989;77(2):257–286.

[12] Viterbi A. Error Bounds for Convolutional Codes and

an Asymptotically Optimum Decoding Algorithm.

Information Theory, IEEE Transactions on. 1967;

13:260 – 269.

[13] Skiena SS. The Algorithm Design Manual. Cham:

Springer International Publishing. 2020.

ASIM 2024 Tagungsband Langbeiträge, 27. Symposium Simulationstechnik, Univ. d. Bundeswehr München, 4.- 6. 9. 2024

120


