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Abstract.  This paper explores the application of multi-
agent reinforcement learning using the Proximal Policy 
Optimization (PPO) algorithm for resolving deadlocks in 
material flow systems with Automated Guided Vehicles 
(AGVs). A multi-agent strategy that optimizes the dynam-
ics and interactions of multiple AGVs in real-time is imple-
mented. The integration of the Population Based Training 
(PBT) algorithm from Ray enables continuous adaptation 
and improvement of learning processes. Subsequent 
modifications to the reward system have also been imple-
mented to enhance the model's efficiency and effective-
ness. The efficacy of the proposed approach is evaluated 
using a material flow simulation for a real industrial use 
case. The results demonstrate significant improvements 
in reducing collisions and increasing throughput within 
the system. This study highlights the potential of multi-
agent reinforcement learning and specifically the PPO al-
gorithm, to enhance the performance and efficiency of 
material flow systems with AGVs. 

Introduction
Industries increasingly rely on automated systems for 
production and logistics, which brings about complexity 
in management, particularly with deadlocks where auto-
mated guided vehicles (AGVs) block each other, halting 
operations. Traditional methods to resolve these dead-
locks (Xu et al. 2014; Hussain et al. 2015), such as wait-
ing or rerouting AGVs, are inadequate for larger systems 
due to scalability and adaptability issues. This paper pro-
poses that Reinforcement Learning (RL), especially 
Multi-Agent Reinforcement Learning (MARL), can ef-
fectively address these challenges. It focuses on the 

Proximal Policy Optimization (PPO) algorithm, com-
bined with Population Based Training (PBT) and tar-
geted reward adjustments, to develop a robust and safe 
system for multi-agent environments. 

The paper is organized as follows: Following a com-
prehensive literature review in Chapter 1, Chapter 2 de-
scribes the used simulation environment, the specific 
challenges faced throughout the project and how they 
were addressed. Finally, Chapter 3 presents and discusses 
the obtained results, while lastly chapter 4 outlines per-
spectives for future research directions and the further de-
velopment of the model.   

1 Literature 

1.1 Reinforcement Learning 
Reinforcement learning (RL) is an area of machine learn-
ing in which an agent learns to make decisions by inter-
acting with its environment. This learning paradigm has 
evolved considerably since the seminal work of Sutton 
and Barto (1998). At its core, RL is about developing a 
strategy or policy that maximizes the agent's cumulative 
long-term reward based on the actions it takes in different 
states. 

The application of RL in complex decision-making 
tasks, has shown promise in the past. The ability of RL to 
learn from experience and adapt to dynamic environ-
ments makes it ideal for dealing with the uncertainties 
and complexity associated with such systems (Zhang et 
al. 2021; Choi et al. 2022). 

The difference between Multi-Agent Reinforcement 
Learning (MARL) and Single-Agent Reinforcement 
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Learning (SARL) lies in the number of agents that learn 
and make decisions in the environment. While SARL fo-
cuses on scenarios in which a single agent controls all 
AGVs, MARL deals with situations in which multiple 
agents act simultaneously. MARL is particularly relevant 
to the problem of deadlocks in logistics systems, as it 
considers the interaction of multiple AGVs and can de-
velop strategies for cooperative behavior to effectively 
avoid or resolve conflicts and deadlocks [Stone & Ve-
loso, 2000]. 

1.2 Proximal Policy Optimization (PPO) 
The Proximal Policy Optimization (PPO) algorithm, pre-
sented by Schulman et al. (2017), is a further develop-
ment in the family of policy gradient methods in RL. PPO 
aims to improve the stability and efficiency of the learn-
ing process by finding a balance between the agent's ex-
ploration ability and the utilization of what has already 
been learned. In contrast to its predecessors, such as the 
Trust Region Policy Optimization (TRPO) algorithm, 
PPO offers a simplified yet effective method for policy 
optimization, making it particularly suitable for use in 
dynamic and complex environments such as those found 
in automated logistics systems. 

1.3 Population Based Training (PBT) 
Population Based Training (PBT) is an approach for hy-
perparameter tuning that combines the advantages of ge-
netic algorithms and hand-guided optimization. Devel-
oped by Jaderberg et al. (2017), PBT enables adaptive 
and time-efficient optimization of the learning processes 
of AI models. PBT dynamically adjusts hyperparameters 
as the model is trained, leading to a continuous improve-
ment in model performance. The main benefit of PBT lies 
in its ability to adapt to changing conditions within the 
training environment. Compared to conventional hy-
perparameter tuning methods, optimal configurations are 
achieved more effectively and quickly.  

By combining these advanced techniques - MARL 
with PPO and dynamic adaptation through PBT - this 
project aims to develop a robust system for automated lo-
gistics that can avoid deadlocks while increasing the ef-
ficiency and reliability of the overall system. 

2 Simulation Model 
There has been a growing interest in using RL for dead-
lock resolution in intralogistics systems. In (Müller et al. 

2022; Jelibaghu et al. 2023), the authors proposed a dead-
lock resolution method using a single RL agent. The 
agent was trained to learn how to resolve deadlocks by 
observing the states of the system and taking actions that 
lead to desired outcomes. The agent was able to achieve 
high levels of deadlock resolution and collisions avoid-
ance in (Müller et al. 2022). 

As part of the research project, a real-world applica-
tion for an AGV system was considered and modelled in 
Plant Simulation (cf. Figure 1). The application is a high-
bay warehouse with five aisles that the AGVs can only 
enter and exit from one side (dead ends). There are three 
AGVs available that have the task of moving pallets from 
the goods receipt, where the orders are created automati-
cally and assigned to the AGVs (well known as dispatch-
ing), to the high rack. At the beginning the AGVs are lo-
cated at the park station. A deadlock situation is shown 
in Figure 1. The deadlock occurs because the AGV01 
currently located on the STR02 wants to enter aisle02. At 
the same time, the AGV02 wants to leave aisle02. The 
simulation model is a digital twin of the logistics system, 
enabling scenario testing and performance optimization. 
It tracks material movement and component performance 
to identify bottlenecks and improvement areas. 

 

 
Figure 1:Illustration of a deadlock with three AGVs at the 

beginning of dead ends 

The AGVs are controlled by an artificial neural net-
work, which is implemented using Python code and con-
nected to the simulation model and the AGV agents via 
the COM interface.  

We decided to reduce the complexity of the environ-
ment, by reducing the number of agents to two. This ad-
justment aimed to provide a clearer view of how well our 
agent could learn and adapt, allowing for a more detailed 
observation.  

To track the hyperparameters and the progression of 
rewards throughout the training, we utilized Weights & 
Biases (wandb). This platform enabled us to gain insights 
into the performance of our model and observe the 
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development of hyperparameters over the course of train-
ing. These adjustments resulted in clearer and more in-
formative training progressions, allowing for more thor-
ough analyses of the model's behavior and effectiveness. 

In Table 1 we present the initial setup of training con-
figurations, action space and reward system, to show the 
baseline from which we began observing and adjusting 
the models performance and learning abilities. 

As Table 1 shows, at first the trials of the trainings 
were carried out serially and not in parallel. This had a 
considerable influence on the hyperparameters. 

 
Training configurations 

Episodes per training 300 
Steps per epsiode 2000 
Trials per training 5 
Concurrent trials 1 
Perturbation interval 5 

Observation Space 
General ID of the considered 

AGVs 
For each agent i x and y position of 

agent i 
 
Current speed of 
agent i 
 
x and y position of the 
target destination of 
agent i 

Action Space 
Possible actions MoveForward, 

MoveBackward,  
Stop 

Reward-System 
Perform action -1 
Pick up order +100 
Complete order +5000 
Not-loaded agent exits aisle +10 
Agent enters occupied aisle -10 
Loaded agent exits aisle -10 

Table 1: Summary of initial action space and reward-sys-
tem 

3 Experiments and Results 
Our work builds on the work of (Müller et al. 2022; 
Jelibaghu et al. 2023). We propose a deadlock resolution 

method using a team of RL agents that is based on a real-
world intralogistics system. We aim to evaluate our 
method on a number of different scenarios and demon-
strate that it is able to achieve high levels of deadlock 
resolution and performance enhancement. In Figure 2 we 
show the MARL functionality. Compared to Single 
Agent Reinforcement Learning (SARL), the MARL ap-
proach is a decentralized approach. This means that each 
AGV is considered as an independent decision maker. 

 
Figure 2: Agents in a multi-agent reinforcement learning 

(MARL) 

In the initial phase of our study, we set out to inten-
tionally provoke a deadlock scenario by initializing two 
or five agents and assigning the same drop-off location 
within the warehouse for the first ten orders. This ap-
proach quickly proved to be too aggressive or challeng-
ing, as it led to the AGVs consistently getting stuck. The 
high number of AGVs and task concentration offered lit-
tle room for exploration. The resulting constant number 
of deadlocks highlighted the inadequacy of such a com-
plex setup. Making it difficult to observe and understand 
the behavior of the reward system, the hyperparameters, 
and the learning efficacy of our agents. 

The analysis is divided into five distinct sections to 
reflect the evolution of our model through various stages 
of adjustments. 

Initially, the investigation begins with an examination 
of results obtained from the baseline setup, which repre-
sents our model's performance under initial conditions 
without any alterations to the reward system or hyperpa-
rameters tuning strategy. This foundational setup, shown 
in Table 2, is crucial for establishing a benchmark against 
which the impact of subsequent modifications can be 
measured. 
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Hyperparameter Search 
space  
function 

Search space 

Minibatch size Randint [4; 4000] 
SGD-iterations Randint [3; 30] 
Clip-parameter Uniform [0.1; 0.3] 
Learning rate  Uniform [0.000005; 0.003] 
KL-Coefficient Uniform [0.3; 1] 
KL-target range Uniform [0.003; 0.03] 
Discount factor  Uniform [0.8; 0.9997] 
GAE parameter  Uniform [0.9; 1] 
Value function co-
efficient 

Uniform [0.5; 1] 

Entropy coeffi-
cient 

Uniform [0; 0.01] 

Table 2: Hyperparameter search spaces and functions 

 
After establishing a baseline understanding, the focus 

shifts to the outcomes following strategic adjustments to 
the reward system. This part dives into how modifying 
the reward parameters influences the learning trajectory 
and decision-making processes of the agents. 

The following part of this chapter explores the effects 
of refining the tuning mechanism. It examines how the 
implementation of a more dynamic and responsive tuning 
approach impacts the model’s performance. 

Lastly, we show the ability and the potential of our 
model to reduce the number of collisions while increas-
ing the number of completed orders. This gives an out-
look on the capability of the model to successfully re-
solve deadlocks. 

Baseline Setup 
We begin by examining the performance of one agent 
(SARL) before expanding our analysis to a scenario in-
volving two agents (MARL). To be clear, we built the 
following scenario. First we ran and analyzed 1 agent in 
the environment and then we took the same model and 
increased it to 2 agents. Figure 3 shows the result of the 
analysis. We use the result of the single agent as a bench-
mark. We analyze the maximum rewards achieved during 
the training. This metric is indicative of the agent's ability 
to optimize its behavior within the environment, with the 
highest reward in a series of trials representing the peak 
efficiency reached by the agent. Out of five trials con-
ducted during this phase, only the best-performing trial is 
considered for detailed analysis. This selection criteria 
ensures that we capture the agent's optimal performance 

potential under the baseline settings (cf. Table 1). 

 
Figure 3: Max reward during training with multi agents 
 
In the initial graphical analysis, contrasting perfor-

mance outcomes between single-agent and dual-agent 
setups provide insightful revelations about their opera-
tional efficiency within the simulation. The Figure 3 re-
fers to 1 agent and 2 agents results. 2 agent refers pre-
cisely to the accumulated reward of 2 agents.  Initially, it 
might be assumed that the single agent would outperform 
due to its sole occupancy of the environment, facing no 
competition or interference. However, our findings show 
a different picture; the dual-agent setup achieved a higher 
maximum reward (cf. Figure 3). It demonstrates the cu-
mulative advantage of having double the number of steps 
available compared to a single agent. This increased ac-
tion potential, combined with effective learning behavior, 
indeed resulted in higher rewards for the dual-agent train-
ing scenario. It emphasized the significance of collabora-
tive efforts in navigating complex environments. 

Despite having twice as many steps at their disposal, 
the fact that the dual agents did not achieve double the 
reward of a single agent can be directly attributed to the 
escalated complexity introduced by their interaction. 
This complexity presents both challenges and opportuni-
ties for learning and optimization, highlighting the deli-
cate balance between cooperation and competition in a 
shared environment. 

Upon closer examination across all five trials for each 
training setup, it becomes evident that the two-agent 
model not only outperforms the single-agent framework 
in terms of maximum rewards but also in cumulative 
mean reward. This shows that the enhanced learning out-
comes facilitated by multi-agent interactions are signifi-
cant. The shared policy learning dynamic allows the sys-
tem to benefit from a richer set of information for policy 
adjustments. This increases the likelihood of achieving 
successful, stable training outcomes. 
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Reward System 
Table 3 shows the updated reward system, detailing the 
strategic modifications made to enhance navigation in the 
simulated environment. These changes were strategically 
implemented to swiftly move agents out of the aisles, 
thereby reducing potential deadlocks and easing traffic 
congestion. 

 
Reward-System 

Perform action -1 
Unloaded AGV performs 
MoveForward on aisle 

-5 

Unloaded AGV performs 
MoveForward on aisl 

-5 

Unloaded AGV performs 
MoveBackward on aisle 

+2 

Pick up order +100 
Complete order +5000 
Unloaded AGV exits aisle +25 
Loaded AGV exits aisle -10 
AGV enters occupied aisle -10 
Unloaded AGV enters aisle -50 

Table 3: Adjusted reward-system 

 
This refinement entailed modifying the existing 

movement incentives for “ ”, “
”, and “ ” actions, which are integral to the 

agents' navigation through the simulation environment. 
The standard penalty assigned to any step taken re-

mained set at -1, preserving the agents' motivation to 
minimize unnecessary movements. However, to promote 
more efficient behavior post-order completion, executing 
a “ ” or a " ” action was assigned a 
larger penalty of -5, while a reward of +2 was allocated 
for a “ ” action. This careful calibration of 
rewards and penalties was designed to maintain a balance 
where agents are discouraged from counterproductive 
movements without overshadowing the adverse implica-
tions of such actions, thereby sustaining the learning im-
pact. 

To further encourage the desired behavior, the action 
of successfully exiting an aisle was assigned a higher re-
ward of +25. Conversely, to deter agents from exploiting 
this system by repeatedly entering and exiting the aisle 
without carrying a load, a hefty penalty of -50 was im-
posed on unloaded travel on the street. This modified in-
centive system was implemented to guide the agents to-
wards behaviors that enhance overall efficiency in the 

logistics environment.  

 
Figure 4: Max reward of training with new reward setup. 

 
Figure 4 illustrates an improvement in the maximum 

reward output compared to Figure 3, which represents the 
results from the initial setup. This enhancement confirms 
that the modifications to the reward system have been ef-
fective, showing a positive impact on the overall perfor-
mance. 

Hyperparameters 
In our exploration of hyperparameters and the implemen-
tation of the tuning process, the utilization of the Popula-
tion Based Training (PBT) algorithm played a pivotal 
role. Despite careful inclusion of all relevant parameters 
within the PBT tuner, along with the definition of search 
spaces and corresponding search functions, it was noted 
that several values remained at their initial setting 
throughout the training period. This phenomenon of no 
adaption applied to all hyperparameters except for the 
clip coefficient. Unexpectedly, the clip coefficient exhib-
ited variations that extended beyond the predefined 
search space boundaries. At the start of each trial, a ran-
dom value for lambda was selected from within the 
search space, establishing the initial conditions under 
which each trial would proceed. 

To leverage the full capabilities of the PBT mecha-
nisms, we adjusted the number of concurrent trials to 
five, allowing for simultaneous training of all trials. This 
setup positioned each trial as an integral component of 
the PBT's population, fostering a dynamic learning envi-
ronment. The perturbation interval, set at every five epi-
sodes, served as a benchmark for evaluating and compar-
ing trials. This interval determined the feasibility of con-
tinuing a trial based on its performance. This necessitates 
adjustments to align with more successful trials or termi-
nating trials that failed to show promise. It should be 
mentioned here that training the trials in parallel leads to 
significantly longer training times and to a partially 
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incomplete recording of the courses in wandb. 
This strategic approach aimed to optimize the learn-

ing process by facilitating real-time adaptations and fos-
tering a competitive yet collaborative environment 
among the trials. The performance outcomes, captured in 
Figure 5, illustrate the impact of these adjustments on the 
model's learning efficiency. 

Due to gaps in data collection for these parallel trials, 
the data of some trials was not fully tracked by wandb. 
Follow several reasons can be attributed: Technical Is-
sues, System Overload, Network Interruptions, Human 
Error and Software Bugs.  Nevertheless, the results in 
Figure 5 showcase clear improvement in the collected 
max-reward, compared to the baseline setup with serial 
trials (Figure 3). These results suggest that parallel train-
ing, despite requiring longer training durations, has a pos-
itive impact on the agents' performance. Such high-re-
ward instances demonstrate the potential benefits of con-
ducting training in parallel. It demonstrates that this ap-
proach can significantly enhance the learning outcomes 
and operational efficiency.  

The primary advantage of conducting parallel trials in 
PBT lies in the dynamic adjustment of hyperparameters 
in real time. While most parameters remained constant 
during serial trials, the training involving parallel trials 
saw dynamic adaptations. This leads and enhances learn-
ing behaviour, making the training process more effec-
tive. By terminating less promising trials, the algorithm, 
ensures that no resources are wasted on prolonging the 
training time unnecessarily. Thereby, it puts the focus on 
the most promising configurations. 

This approach allows for the rapid identification of supe-
rior hyperparameter configurations compared to manual 
tuning, The capability to dynamically adjusting and re-
fining the training process in real time represents a piv-
otal shift towards more agile and responsive agent 

training methodologies. 
Figure 6 provides a detailed visualization of the hy-

perparameter values across all trials. It is evident that 
many trials exhibit similar or identical hyperparameter 
values, which is consistent with the observation from se-
rial trainings that hyperparameters tend to remain con-
stant. Nevertheless, the trials that underwent dynamic ad-
justments generally show improved performance, rein-
forcing the advantage of real-time hyperparameter tun-
ing. However, this does not negate the possibility of 
achieving good performance in serial trials, as previously 
demonstrated. 

 
Figure 5:Max reward of training with 2 agents and concur-

rent trials 

When analysing the hyperparameters of the parallel 
training trials, it is essential to recognize that the values 
presented represent only the average due to the dynamic 
adjustments made during the process. From these aver-
ages, it is observable that a higher entropy coefficient, 
which introduces more randomness into the decision-

making process, can be beneficial to the results. An in-
crease in entropy generally encourages exploration, 
which can prevent the agents from getting stuck in subop-
timal behaviors. 

Furthermore, a slight uptick in the learning rate, 
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paired with a reduced clip parameter, appears to be ad-
vantageous. The learning rate determines how quickly 
the model adapts to new information, while the clip pa-
rameter helps in stabilizing the policy update. Adjusting 
these parameters could lead to a more efficient learning 
process by balancing the rate of adaptation with the sta-
bility of learning. However, pinpointing the exact values 
that yield the best performance is challenging, as a wide 
array of configurations have resulted in favorable out-
comes. Therefore, while certain trends in hyperparameter 
adjustments can be identified as generally positive, the 
diversity in effective configurations emphasizes the com-
plexity and adaptive nature of the learning environment. 
This variability shows the need for a comprehensive hy-
perparameter search when tailoring the model to maxim-
ize performance.

Collision avoidance 
In the final section of the analysis, we demonstrate the 
capability of our model to not only avoid collisions but 
also to reduce their occurrence over the course of train-
ing, while simultaneously enhancing the throughput of 
completed orders. We present three Figures to illustrate 
these developments: Figure 7 displays the reduction in 
the number of collisions throughout the training sessions. 
Figure 8 shows the corresponding increase in the number 
of successfully completed orders. These completed or-
ders lead to the reward shown in Figure 9. 

Figure 7: Number of cumulative collisions of 2 agents 
during training process

Figure 8: Number of cumulative completed orders of 2 
agents during training process

These figures clarify that the MARL approach

effectively enhances operational efficiency by increasing 
throughput and minimizing disruptions caused by colli-
sions. Furthermore, these results indicate that the model 
possesses significant potential to avoid and resolve dead-
locks, as collisions and deadlocks present very similar 
scenarios within our simulations. This demonstrates sub-
stantial improvements in both safety and efficiency of the 
AGV-fleet. 

Figure 9: Accumulated reward of 2 agents during train-
ing process

Testing phase
Eventually, we wanted to verify the policy our agents 
have learned over the period of training. Therefore, we 
established checkpoints to capture and store the policy 
and hyperparameter configurations learned by the agents 
at specific training stages. By reloading these check-
points into a model, we were able to verify that the agents 
were indeed learning. During the 100-episode learning 
phase the agents were still allowed to continue exploring, 
with the data loaded from the checkpoints serving as 
starting points for further learning and adaptation.

Figure 10: Number of cumulative collisions of 2 agents 
during testing phase

Figure 11: Number of cumulative completed orders of 2 
agents during testing phase 
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Figures 10 to 12 offer a clear visualization of the out-
comes from the checkpoints applied during our testing 
phase. Figure 10 illustrates the cumulative number of col-
lisions, which have remained consistently low from the 
beginning of the testing phase, suggesting that the colli-
sions are well-managed throughout the training. Figure 
11 shows the cumulative number of completed orders, 
where it is evident that the orders are completed at a high 
rate, consistently ranking in the upper performance tiers 
of our training data. Lastly, Figure 12 shows the cumula-
tive rewards occrued, which are also high from the outset 
of the testing phase. These visuals collectively demon-
strate that the checkpoints contain effective policy and 
hyperparameter configurations, and that the agents did 
not require a reset or additional exploration phases to 
achieve these results. This underscores the robustness 
and efficiency of the learning mechanisms we have im-
plemented. 

Figure 12: Sum of collected reward of 2 agents during 
testing phase

3 Conclusion and Outlook
In summary, this study has demonstrated that the Proxi-

mal Policy Optimization (PPO) approach coupled with 
Population Based Training (PBT) for hyperparameter 
tuning is suitable for efficiently coordinating AGV fleets 
to reduce collisions and deadlocks and thus throughput to 
increase. Possible extensions of the approach address the 
question of how to increase the number of agents. This 
will allow us to better understand the scalability of our 
approach and to refine the interplay between agents. Fur-
thermore, we plan to experiment with different configu-
rations of the perturbation interval, a critical mechanism 
in PBT that can significantly influence learning out-
comes. In parallel, further adjustments to the reward sys-
tem are on the horizon. These modifications aim to en-
hance the learning process even more, and we intend to 
evaluate the impact of these changes, especially when 
combined with parallel trials. With these adjustments, we 
anticipate uncovering even richer insights into the 

model's performance. While our findings have shown 
promise, the capabilities of our model and the process of 
refining its performance is ongoing. There are still many 
opportunities to further improve the model and gain 
deeper understanding, driving the evolution of AGV co-
ordination in logistics.
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