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Abstract.  Autonomous Mobile Systems (AMS) offer sig-
nificant advantages in industry and private sectors by 
adapting to diverse and dynamic environments. To train 
these systems, large amounts of data are required, typi-
cally obtained from simulated environments. However, 
the creation of these environments is often labor-inten-
sive. Here, we propose a generative pipeline that provides 
a streamlined approach to virtual training and testing 
while allowing users to apply automated methods includ-
ing generative AI. Our pipeline consists of four, partly iter-
ative main steps. The pipeline spans from the creation of 
individual assets to the utilization of the simulated envi-
ronments. The pipeline is then implemented for an exem-
plary scenario, utilizing multiple methods including gener-
ative AI. Furthermore, we propose a novel application of 
our pipeline to provide robots with the capabilities to “im-
agine” virtual experiences. The presented pipeline not 
only simplifies the process of generating simulated envi-
ronments, but also resembles a scalable framework for 
developing increasingly complex AMS. 

Introduction
Mobile robots and specifically Autonomous Mobile Sys-
tems (AMS) are changing the world. While transport ro-
bots are already well-established in industry, they have 
not yet reached their peak. In the coming years compa-
nies will expand their fleets and applications with new 
systems, increasingly powered by AI. [1] 

Developing and training AI models requires massive 
amounts of data to ensure performance in the demanding, 
large, dynamic, and diverse operating environments of 
AMS. One solution to reduce the effort associated with 
collection and annotation of the required data is simula-
tion. In simulated environments, the possibilities to gen-
erate synthetic data are virtually unlimited. However, 
generating data for all kinds of imaginable scenarios, is 
still related with large human efforts. Recent 

breakthroughs in generative AI could enable developers 
of AMS to reduce the needed effort while improving the 
quality of synthetic data from robotics simulation. 

Most existing work on generating simulated robot op-
erating environments focuses on reinforcement learning 
in small manipulation scenarios [2, 3]. Those do not lie 
within the scope of our work. One notable exception has 
been presented by Bonetto et al. Their approach focuses 
on “Generating Realistic Animated Dynamic Environ-
ments for Robotics Research”, abbreviated “GRADE” 
[2]. GRADE requires an existing set of assets. Bonetto et 
al. have, amongst others proven that synthetic data from 
simulated environments can be sufficient to train and val-
idate vision-based robots [3, 4]. Another related approach 
that utilizes generative AI has been presented in the po-
sition paper “Towards Generalist Robots: A Promising 
Paradigm via Generative Simulation” [5]. Xian et al. de-
fine the term “generative simulation”. Their concept is 
supposed to generate scenes with accompanying robot-
tasks and at the same time include training supervision. 
While the authors discuss multiple ideas and claim to be 
able to generate infinite data for various robots in diverse 
environments, at the time of writing this paper, the work 
of Xian et al. mainly remains a literature review without 
actual implementation [6]. Their related work “Ro-
boGen” [7] focuses on motion planning for stationary ro-
bots. 

In this paper, we first identify methods that are rele-
vant in the context of simulated environments for AMS. 
We then present a generative pipeline for the creation of 
simulated environments for AMS. The pipeline consists 
of four main steps, which are partially iterative. In this 
modular approach, different methods can be employed in 
different steps of the pipeline. This applies to both con-
ventional methods and generative AI-methods. We fur-
thermore present an exemplary implementation of our 
pipeline that utilizes several of the methods discussed to 
create simulated environments, fully populated with AI-
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generated assets. Finally, we introduce the concept of 
‘imaginative robots’ and propose the application of our 
pipeline to enable robots to prepare for new and unknown 
situations autonomously. 

1 Methods for the Creation of 
Simulated Environments 
Before defining a pipeline for creating simulated en-

vironments, it is important to clarify the relevant meth-
ods. We identify four general methods that are relevant 
to simulated operating environments. These methods can 
incorporate existing models, databases, etc. Although 
these methods can be used in conjunction with each 
other, for the purpose of this discussion, we treat them as 
isolated from one another. We limit ourselves to a rather 
general evaluation, which is intended to provide general 
guidance. The presented methods may yield different re-
sults when specific approaches are evaluated. In this pa-
per we focus on static, unarticulated environments. Cus-
tomizability of assets and environments is still a relevant 
aspect for specific scenarios and with articulated models 
in mind for future work. 

1.1 Manual Methods 
The first and most obvious class of methods is manual 

methods. This classification includes all approaches 
where substantial work is done manually. Although man-
ual methods can utilize tools, they do not involve auto-
mation. Users have control and may modify every aspect 
of their workpiece to fit within the requirements, as long 
as it is supported by the tools utilized.  

While manual methods can produce high-quality 
handcrafted results, the trade-off is that they are largely 
time consuming. Therefore, they are not suitable for 
large-scale simulated environments. 

1.2 Automated Reconstruction Methods 
Due to the time-insensitivity of manual methods, the ap-
plication of automated methods is attractive. A class of 
automated methods are methods for automated recon-
struction. They are proven to be suitable for efficiently 
reconstructing larger scale outdoor but also indoor envi-
ronments. [7] 

Automated reconstruction approaches are often im-
plemented as photogrammetric methods based on RGB 
data, but might also incorporate depth data. The gathered 
data is then combined into photorealistic 3D models that 

accurately represent their real-world counterpart. [7, 8] 
A significant disadvantage of automated reconstruc-

tion methods is limited modifiability of the generated 
models. This hinders the application of photogrammetric 
methods in the context of generating new data for train-
ing and validation of AMS. Possible applications include 
the reconstruction of individual assets or the reconstruc-
tion of empty “base” environments that can be populated 
later on. 

1.3 Procedural Methods 
Methods for automated reconstruction cannot create new 
environments and therefore might be helpful in some as-
pects, but not to tackle the core problem of new and di-
verse data. Manual methods can build upon human imag-
ination to create new content - however strongly impeded 
by the necessary manual labor. Hence, we will now shift 
towards methods that are able to create entirely new as-
sets and environments with minimal human intervention. 

Procedural methods generate content algorithmically 
within predefined constraints, without the need for man-
ual input after an initial setup. These methods can pro-
duce a vast amount of diverse and complex data automat-
ically, both in a deterministic manner but also by incor-
porating random elements. The absence of a manual in-
put apart from the initial setup is a core feature of those 
procedural methods.  

Procedural methods are well established in computer 
games, where they are used to generate expansive virtual 
worlds, such as in commonly known Minecraft. They 
also find application in robotics simulation: NVIDIA 
Omniverse includes a "Domain Randomizer", able to al-
ter multiple parameters of a simulated scene randomly 
[9]. Further procedural approaches in robotics simulation 
include Cropcraft [10] for generating simulated crop 
fields or the already mentioned GRADE [2]. [11, 12] 

1.4 Generative AI-based Methods 
The next class of relevant methods is based on generative 
AI. Similar to procedural methods, generative AI-meth-
ods are able to computationally generate new content. 
Unlike procedural methods, they are generally not con-
strained to algorithmically pre-defined content. There are 
several popular approaches to implementing generative 
AI, such as Generative Adversarial Networks (GANs), 
Variational Autoencoder (VAEs) or Transformer Models 
[13–15]. The latter might be the most publicly known 
type of model for being the basis of LLMs like ChatGPT.  
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Another relevant approach involves diffusion models. 
Diffusion models start with random noise and iteratively 
refine it into a detailed output, guided by a prompt. In-
spired by the physical diffusion process, these models re-
verse noise addition, leveraging conditioning infor-
mation – like the provided prompt – to shape the noisy 
base towards the desired content. This approach enables 
the generation of high-quality outputs.[16, 17] 

A further notable approach are Neural Radiance 
Fields (NeRFs). NeRFs synthesize 3D scenes from 2D 
images by using deep neural networks to gain a volumet-
ric representation of a scene. They are able to generate 
high quality scenes, but at the cost of computational in-
efficiency. [18] 

1.5 Summary of Relevant Methods 
All of the methods discussed in this chapter are relevant 
and usable for creating simulated environments. How-
ever, each of them has specific advantages and disad-
vantages. Users have to choose a fitting method based on 
their specific needs. To summarize the findings of this 
chapter and to ease the decision-making process, Table 1 
provides a generalized comparison of the methods men-
tioned. They are compared in five categories and rated 
from -- (worst) up to ++ (best): 

 Human Effort involved, less is better 
 Quality of results assets 
 Customizability of assets for specific requirements, 
e.g. rigged objects 

 Hardware requirements imposed by the method; lower 
requirements are rated better 

 Originality, meaning the capability to generate new 
content 

Table 1: The four discussed methods for creating simu-
lated environments are compared in regards 
to effort, quality, customizability, hardware re-
quirements and originality. 

2 Introduction of the 
Generative Pipeline 

In the following we introduce a pipeline which enables 
its users to create, compose and harness simulated envi-
ronments. All methods compared in the previous chapter 
can be applied throughout the pipeline. They may also be 
combined and different approaches might be used in dif-
ferent steps. The pipeline shown in Figure 1 consists of 
four steps, which are explained in a generic manner in 
this chapter. An exemplary implementation is discussed 
in the following chapter 4. 

 
Figure 1: The proposed pipeline for the generation of 

simulated environments consists of four steps. 

The foundation of every virtual environment are its indi-
vidual components, which we refer to as assets. Hence 
the first step of the pipeline is the “Creation” step, where 
assets are generated. Those are 3D models of individual 
items, e.g., a machine or a table. They should be stored 
in a standardized and widely compatible format to ensure 
future usability. 

The assets created in step one need to be classified 
and rated. This is done in step two, “Classification and 
Rating”. Depending on the method applied for creation 
of the assets, this step varies in complexity. The goal is 
to obtain a database of assets, classified at least by type 
and quality. An extensive, high quality model database is 
crucial for a successful implementation of later steps. Us-
ers might also incorporate existing and purchasable sets, 
needing to keep in mind the reduced control over the as-
sets. 

Building upon the assets created and classified in the 
previous steps, we can proceed to the third step of “Com-
position”. Here the simulated environments are com-
posed from the models in the asset database. This step 
can vary greatly in complexity, depending on the size and 
complexity of the desired operating environment of the 
AMS in question. 

The fourth step represents the application or actual 
use of the simulated environment and does not lie within 
the scope of our work. Typical applications include the 
generation of synthetic data, validation of the AMS soft-
ware or reinforcement learning [3, 19]. 

Notably, the pipeline shown in Figure 1 does not end 
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here. Instead, an iterative process is started after the ap-
plication step: The pipeline returns to the environment 
composition step. Here, a new simulated environment is 
created and then used for the desired application. This 
can be done over and over again. Compared to existing 
domain randomization approaches in robotics simulators, 
an entirely new environment can be created with minimal 
effort. The application can thus benefit from experiences 
in diverse and virtually unlimited environments. This is a 
core component of our approach and allows users to take 
full advantage of the work done in the first two steps. 

3 Exemplary Implementation of 
the generative Pipeline 

For the validation of the proposed pipeline, we chose a 
scenario of practical use for ourselves: An electronics 
production environment, which is to be used for the val-
idation of an autonomous tow truck. In the following, we 
present an exemplary implementation of the pipeline us-
ing various methods. 

We chose to focus the application of generative AI on 
the first step of the pipeline. The second step is conducted 
manually due to the nature of the results from the previ-
ous step. For step three we present and apply a highly 
adaptable procedural approach. In this publication the 
fourth step is limited to a qualitative evaluation of exem-
plary generated environments. 

For implementation we chose – independently from 
[2] – to use the .usd-format and NVIDIA Isaac Sim (NIS) 
as simulation software. NIS offers significant benefits in 
regards to graphics and thus evaluation of vision-based 
algorithms over the established Gazebo simulator [2, 20]. 

3.1 Creation of Assets through Generative AI 
In the first step of asset creation, we apply generative AI. 
After applying multiple AI-models and optimizing their 
settings, we settled on using MV Dream and Magic3D 
[21, 22]. Both were used through the threestudio frame-
work [23]. 

The used models use two vastly different approaches. 
Magic3D is based on a text to image model with a huge 
training dataset. MV Dream is trained on a 3D-model da-
tabase. This approach delivers results of higher quality, 
but for a smaller range of prompts. For very specific 
prompts like “a pick and place machine” Magic3D is the 
more promising approach. We also noticed that MV 
Dream delivers more consistent results than Magic3D. 

With the goal in mind of generating models that are as 
diverse as possible, Magic3D appears to be the better so-
lution. Therefore, depending on the assets to be gener-
ated, one has to find a trade-off between higher quality or 
diverse assets. Generally, both approaches are able to 
generate 3D-models in usable quality as Figure 2 illus-
trates. The left section of the figure displays textured ren-
derings, while the right section represents the normals of 
the meshes. 

 

 
Figure 2: Both 3D models depicted are generated with 

the prompt “Industrial Reflow Oven”. The up-
per oven is created by Magic3D, the lower one 
by MVDream. 

To ease the creation of a large number of assets, we use 
a script that automatically launches the AI model using a 
list of pre-defined prompts. The importance of using the 
right prompt when generating an asset is even more im-
portant than in 2D use cases. A prompt like “a pencil” 
likely won’t yield a usable result. A more promising 
prompt would be “an upright standing pencil”. 

3.2 Manual Classification and  
Rating of Components 

Due to the high hardware requirements of the AI models 
used in the first step, we were only able to generate a lim-
ited number of 300 assets over the course of multiple 
months. This low number of assets allows us to conduct 
the second step of the pipeline manually. It is simplified 
by the fact, that no classification of assets is needed due 
to the known prompts used for their creation. 

However, the quality of the generated assets varies 
vastly, even within models generated with the same 
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prompt. The models are categorized into three different 
categories. “Good” are all useable models, “bad” are 
models where the mesh or texture have significant prob-
lems and “failed” for assets where the AI completely 
failed. Around 30% of the models are rated “good” and 
thus deemed usable. The models generated in the first 
step and rated “good” in this step form the basis for the 
next step of environment composition. Figure 3 shows a 
comparison of two models rated “bad” and “good”, cre-
ated with the same prompt. Additional work is necessary 
for AI generated assets, since the AI-models we use are 
not aware of absolute scales. We thus have to scale and 
rotate the generated assets manually. 

 
Figure 3: Even with the same prompt, the resulting as-

sets can vary greatly in quality, as illustrated in 
this comparison of results from Magic3D with 
the prompt “Pick and Place Machine”. The up-
per model is rated as “bad”, the lower one as 
“good”.  

3.3 Procedural Environment Composition 
For environment composition, we present a procedural 
approach that uses environment subdivision and provides 
interfaces to the methods outlined above through a mod-
ular approach. For our implementation, we rely solely on 
our AI-generated model database. The environment com-
position can be divided into three substeps which are dis-
played in order in Figure 4. 
 

 
Figure 4: The environment composition step can be bro-

ken down into the three substeps of layout 
generation, definition of bounding spaces and 
asset placement. 

During layout generation, the available space is defined. 
A randomly sized rectangle is defined as the base for the 
layout. Next, the generated space is subdivided – also 
randomly – into the available classes of space. For our 
implementation, those are: 

 Office space 
 Storage space 
 Production space 

The latter is further divided into multiple production 
lines, depending on the size of the plant. An exemplary 
result of this process is shown in Figure 5. 

 
Figure 5: This exemplary procedurally generated floor 

layout consists of an office space (green), stor-
age space (blue) and multiple production lines 
(red). 

Subsequently, the defined spaces are further partitioned 
into bounding spaces. They are defined by their size, po-
sition and subtype. An iterative algorithm divides the 
spaces defined by the layout into smaller rectangular 
bounding spaces. Their size is chosen randomly within 
pre-defined bounds that are dependent on the class of the 
space. An exception is made for the production lines: To 
achieve a more realistic, uniform layout, their size is only 
generated once for each layout and thus identical. 

Each bounding space is then equipped with a proce-
durally generated group of assets. For this purpose, a sub-
function is called for each bounding space. This function 
generates a fitting group of assets within the given space. 
In our implementation, the function is defined among 
others for workplaces, storage racks, and production 
lines. An exemplary, randomly generated production line 
is shown in Figure 6. 
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Figure 6: The depicted exemplary production line com-

posed within step three consists of three dif-
ferent AI-generated machines, which are used 
two or three times. 

For the placement of the production lines in our environ-
ments a modification has been made: While the sub-func-
tion generally generates a new group of assets for each 
bounding space, this is not fitting for the production lines. 
In practice, a production plant often operates several 
identical production lines. Therefore, a number of types 
of production lines is randomly chosen after space parti-
tioning. The different lines – like the one in Figure 6 – 
are stored separately from the main .usd file. Instead of 
generating a new production line for each defined space, 
one is then randomly chosen from the pre-generated lines 
and placed within the available space including a ran-
domized offset. By adding the modifications for the pro-
duction lines to our implementation, we are both able to 
generate random environments, but also to obtain areas 
where a specific structure is necessary. 

3.4 Assessment of Generated Environments 
In this paper we restrict the application step to a qualita-
tive assessment of environments generated by the pipe-
line. An advanced application is discussed in chapter 4.2. 
Figure 7, Figure 8, and Figure 9 represent examples of 
each kind of area defined in our implementation. 

From the exemplary screenshots we can conclude that 
the presented pipeline and its implementation are suitable 
for the generation of simulated environments for AMS. 
The generated environments do not yet reach the same 
level of detail as handcrafted simulated environments. 
However, while composing an environment by hand 
would take hours or days, our pipeline is capable of com-
posing environments in a few minutes, running on a 
standard desktop computer. We expect that advances in 
generative AI and further improvements to the pipeline 
will make it possible to generate environments and their 
assets with higher quality and more resource efficient in 
the near future. 

 
Figure 7: This screenshot from an environment gener-

ated by our implementation of the pipeline de-
picts an office area composed with AI-gener-
ated workplaces. There are multiple different 
desks present, picked randomly from the asset 
database. 

 
Figure 8: This screenshot from an environment gener-

ated by our implementation of the pipeline de-
picts a storage area with AI-generated storage 
racks. 

 
Figure 9: This screenshot from an environment gener-

ated by our implementation of the pipeline 
shows a production area consisting of multiple 
production lines with AI-generated machines. 
The lines on the left are identical and have 
been procedurally composed within step 
three. 
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4 Discussion and Outlook  
In the following chapter the insights from this paper are 
discussed. We also give an outlook on a novel application 
of the pipeline. 

4.1 Discussion 
The validation of the generative pipeline presented in this 
paper underscores the pivotal role generative AI plays in 
the future development of AMS. With AI advancing at 
unprecedented speeds, this structured and modular ap-
proach is vital for future applications and allows users to 
update their pipeline as new and more advanced solutions 
emerge. Our approach has been demonstrated to be able 
to generate diverse and virtually unlimited environments 
with minimal human input. It is not yet capable of com-
pletely replacing human experts. Nevertheless, the pipe-
line offers a scalable solution to the data generation chal-
lenges discussed in the introduction. 

Current key limitations of the pipeline include the 
generation of strictly rectangular layouts with continuous 
space classifications and the necessity for manual coding 
of asset placement functions. These constraints hinder the 
diversity and realism of the generated environments. Fur-
thermore, manual evaluation of the assets in step two will 
not be a sustainable approach going forward. Another 
hindrance for large scale implementation is the compu-
ting power necessary. The employed generative AI mod-
els required around 40 GB of VRAM and took two to 
three hours per asset generated on a NVIDIA 
RTX 6000 ADA graphics card. At the state of the art, AI-
generation of assets thus imposes significant costs for 
hardware acquisition and operation. 

4.2 Imaginative Robots 
Building upon the capabilities of the presented pipeline, 
we propose a novel application that could substantially 
improve the adaptability of AMS: Enabling robots to ‘im-
agine’. AMS could evaluate past experiences to identify 
potentials for improvement or to prepare for new tasks. 
The concept leverages the pipeline to enable robots to au-
tonomously generate new, imagined experiences derived 
from past experiences or other inputs. Imaginative robots 
are able to generate and train on synthetic data tailored to 
unfamiliar environments, significantly enhancing their 
problem-solving capabilities and adaptability. This is key 
to advancing the flexibility and autonomy of AMS, ena-
bling them to operate effectively in novel and 

unpredictable situations. 
We believe that our pipeline holds promise not only 

for this imaginative approach but also for improving 
more established methods such as reinforcement learn-
ing. 

5 Conclusion and Future Work 
In this paper, we introduced a pipeline designed for gen-
erating simulated environments for AMS. This pipeline 
covers the entire spectrum from the creation of individual 
assets to the generation of complete simulated environ-
ments. It enables the rapid generation of large amounts of 
synthetic data, which is invaluable for robot training and 
validation. 

Special attention was paid to advances in generative 
AI, which offer significant improvements over traditional 
methods. To validate our proposed pipeline, we imple-
mented it and successfully generated a wide range of 
electronics manufacturing environments, populated by 
AI-generated assets. In addition, we introduced an inno-
vative concept aimed at creating “imaginative” robots.  

To exploit the full potential of our pipeline, we antic-
ipate further developments in generative AI, which is ad-
vancing at a remarkable pace. Our ongoing efforts will 
focus on integrating newer AI models to improve the 
quality and efficiency of asset creation. An example 
could be LATTE3D, which has been released just at the 
time of writing this paper [24]. Additionally, we foresee 
the application of generative AI at various stages of the 
pipeline, including asset evaluation and layout genera-
tion, thereby broadening the range of scenarios our pipe-
line can address. 

Building on these advancements, we aim to fully re-
alize the concept of imaginative robots. Currently, this is 
achievable to some extent, but as our pipeline evolves to 
generate new assets and types of environments on the go, 
its full potential will be unlocked. Until then, the use of 
existing assets and predefined environment classifica-
tions provides a sufficient interim solution. 
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