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Abstract. We present a simulation and optimization frame-
work for stochastic resource-constrained project scheduling
problems. The stochastic features are the job durations mod-
eled by continuous random variables (without any time dis-
cretization) and the fluctuations are simulated by testing a
sufficiently large number of realizations of an instance. The
aim is to gain insights in the dependencies between the fluc-
tuations of the input parameters and the objective function to
enable a priori estimations. Such estimation methods devel-
oped by simulating small instances could be extrapolated to
problems with a larger number of jobs or with more compli-
cated features.

Introduction
Resource-constrained project scheduling problems

(RCPSP) enjoy a widely spread relevance. From

the theoretical perspective, they serve as research ob-

jects for combinatorial optimization, the development

of heuristics and event-discrete simulation techniques.

From the practical perspective, they arise in manufac-

turing contexts, worker allocation schemes, medical op-

eration and surgery planning and even in packing prob-

lems – just to mention a few. In many real-world prob-

lems, process parameters and other quantities tend to

fluctuate or are just known modulo some uncertainties.

Consequently, improved modeling means incorporating

such aspects. This can be done by considering parame-

ters as random variables of a given distribution instead

of fixed numbers.

A view in the literature underlines the importance of

RCPSP: early attempts go back to [1, 2, 3] and re-

cent surveys coping the variants of such problems are

for example [4, 5]. In general, heuristics and the

genetic algorithm play an important role [6, 7, 8],

some further state-of-the-art algorithms can be found

in [9, 10, 11, 12, 13]. The works [13, 14, 15, 16] pay

attention to stochastic RCPSP mainly with discrete ran-

dom variables. However, the NP-hardness of RCPSP

impedes finding the exact optimum of larger problem

instances within a reasonable time. Consequently, we

are forced to optimize small enough problem instances.

Then the findings obtained are extrapolated.

Our approach focuses on continuous random variables

because many relevant processes or phenomena can be

modeled by normally distributed, Gamma or Beta dis-

tributed quantities. A stochastic RCPSP is character-

ized firstly by the dependencies of its inner parts (called

jobs), secondly by the duration of the jobs (continuous

random variables) and thirdly by the number of avail-

able resources. The aim is to minimize the cycle time.

Basically, we are interested in some aspects of the sys-

tematics with special attention to stochastic influences:

• How are the distributions of the input parameters

and the distribution of the objective function re-

lated?

• Regarding the reliability, is it possible to estimate

the variation of the objective function using the

variation of the input parameters?

To attack these questions, we established a four-part

simulation and analysis framework:

1. Random Number Generator: provides an appropri-

ate set of random numbers of a prescribed distribu-

tion with expectation value and standard deviation

as parameters to encode the duration of all jobs.

2. Structure Analyzer: investigates the dependencies

of the jobs to find critical paths (dependencies are

encoded in a directed network graph).

3. Optimizer: executes the optimization of the cycle

time for all stochastic realizations of the RCPSP.

4. Output Analyzer: evaluates the resulting sample of

realizations w. r. t. statistical characteristic values

and distribution function fits.

Our paper is organized as follows: Section 1 provides

the methodical basis in terms of a precise definition of

the problem class scope and short notes on the Gamma
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and the Beta distribution but of course not missing to

describe the simulation procedure. Section 2 is dedi-

cated to selected results. We summarize in Section 3.

1 Model Setup and Simulation
Approach

In this section the employed methods are explained.

First, the scope of a stochastic RCPSP is precisely de-

fined. Second, the framework for solving such RCPSP

is presented. These two main parts are supplemented

by some short notes on the Gamma and the Beta distri-

bution.

1.1 Stochastic RCPSP

To keep the view on the principle, we refrain here from

features like multiple projects, multiple modi as well

as transfer times or type representatives. A stochastic

RCPSP is therefore described by:

• jobs j = 1...J and their respective durations d j ∈
R≥0 considered as continuous random variables;

each job starts once and must not be interrupted

• successor matrix S ∈ {0,1}JxJ defined by

S j1 j2 =

{
1 if job j2 follows after j1
0 otherwise

(1)

• number of renewable resources R ∈ N ∪ {∞},

where each job occupies exactly one resource dur-

ing its execution and R = ∞ refers to the uncon-

strained problem

In summary, a stochastic RCPSP is a tuple

(J,R,(d j),(S j1 j2)) supplemented by the stochastic

parameters entering the vector (d j).

1.2 Simulation and Optimization Framework

The framework consists of the following four parts.

Random Number Generator:

Simulating stochastic RCPSP means generating a

sufficient large sample of realizations. For each

stochastic RCPSP and each job, the expectation value

μ j ( j = 1...J) of the duration d j is kept fix. Further-

more, the coefficient of variation η is the same for all

jobs, such that the standard deviation σ j of the duration

d j follows from σ j = η · μ j. In addition, the type of

distribution is chosen (Gamma or Bets distribution, we

do not consider normally distributed random variables

since they can obey negative values). The sample size

varies from 10,000 up to one million.

Structure Analyzer:

Dealing with continuous random variables impedes

simple, linear optimization models with binary deci-

sion variables (see [17, 18] for instance). Since we

refrain here from a time discretization, we choose

the following structural approach to incorporate the

boundary of the number of resources. Let the successor

matrix S be given. As a first step, the tool evaluates

the potentially maximal number Rmax(S) of resources

needed such that there would be no queue (and the

problem is unconstrained independently of d j). Typi-

cally, Rmax(S) > R. As a second step, the tool collects

all those successor matrices S̃ with S̃ j1 j2 ≥ S j1 j2 for all

j1, j2 and Rmax(S̃) = R. Considering S̃ instead of S,

the RCPSP becomes unconstrained. In summary, the

idea is to solve rapidly (many) unconstrained PSPs to

find the optimum of the original RCPSP. That is the

key point because the main issue lies in the efficient

selection of all relevant S̃ matrices. To handle this

challenge, we strongly employ the close connection

between successor matrices and posets and the knowl-

edge about such sets (generation, isomorphism classes,

structural dependencies, [19, 20, 21, 22, 23]).

Optimizer:

The task of minimization the cycle time is equivalent

to find the shortest path in a weighted directed graph

(encoded in S̃). To this end, we employ both Gurobi

and the Python package Networkx to go through the

list of the relevant S̃ matrices. Such an evaluation is

done for all stochastic realizations.

Output Analyzer:

The sample of all cycle times enters this analyzing

tool which computes statistical quantities, for example

mean value, standard deviation, coefficient of variation,

skewness. In addition, it fits the data to a given type of

distribution depending on multiple parameters. Partic-

ularly interesting is the relation in terms of appropriate

parametrizations between input and output quantities.

All in all, the framework is completely automatized

and can be combined with a simulation framework

for heuristics [24] and with an AI tool for finding
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promising fit parametrizations for the Output Analyzer.

However, the results of the following section focus on

stochastic fluctuations.

1.3 The Gamma and the Beta Distribution

We briefly collect some folklore about these two dis-

tributions both quite convenient for modeling process

times or human working durations. Let X denote a ran-

dom variable with its expectation value μ , its standard

deviation σ and the dimensionless coefficient of vari-

ation η = σ
μ . The probability density function of the

Gamma distribution reads as

f (Γ)α,β (x) =
β α

Γ(α)
xα−1e−βx (2)

with x ≥ 0 (arbitrary large values are admissible), α =
μ2

σ2 and β = μ
σ2 ; analogously, we have

f (B)α,β (x) =
Γ(α +β )
Γ(α)Γ(β )

xα−1(1− x)β−1 (3)

for a Beta distribution with x ranging in [0,1] (linearly

scalable to the interval [xmin,xmax]),

α = μ
( μ

σ2
(1−μ)−1

)
(4)

and

β =
μ
σ2

(1−μ)2 +μ −1. (5)

The cumulative distribution functions are denoted by

F(Γ)
α,β and F(B)

α,β , respectively.

2 Selected Results
We picked three instances for our case study: 20 and

50 jobs for the unconstrained PSP and 10 jobs for in-

vestigating the RCPSP. As mentioned above, a univer-

sal coefficient of variation η is fixed (see below) and

the expectation value μ j of the duration d j is chosen

randomly in the interval [0.3, 0.7]. A main result of

our investigation is that the distribution of the objective

function can be described with high accuracy by a prod-

uct ansatz having only two factors and four parameters

even the problem class contains many parameters. In

addition, this statement remains true of all values of the

resource number R. Note that it is not sufficient to fit a

simple Gamma (Beta) distribution if the input parame-

ters are Gamma (Beta) distributed. Indeed, the second

Figure 1: Histogram (blue) of the cycle time x and best fits
(red) according to (6) for instance with J = 20,
Gamma distribution and η = 0.3 (sample size one
million).

factor in the product is necessary.

Let us take a closer look at the product ansatz. We chose

F(D)
α1,α2,β1,β2

(x) = F(D)
α1,β1

(x) ·F(D)
α2,β2

(x) (6)

with D ∈ {Γ,B} which is inspired by the following

facts.

• The sum of multiple Gamma distributed, indepen-

dent random variables is Gamma distributed.

• The sum of multiple Beta distributed, indepen-

dent random variables is approximately Beta dis-

tributed.

• The cumulative distribution function of the maxi-

mum of multiple, independent random variables is

equivalent to the product of the cumulative distri-

bution functions of the single random variables.

Hereby, the statements of the first two bullet points refer

to the stochastical behavior along chains of jobs while

the statement of the third bullet point refers to the com-

parison of such chains to select the critical path. How-

ever, this inspiration does not pay very much attention

to the mathematical subtleties (especially the stochasti-

cal independency of the random variables).

2.1 Results of the Unconstrained PSP

We consider four samples of unconstrained problems:

J = 20 with Gamma distribution (see Figure 1) and Beta

distribution (see Figure 2), J = 50 with Gamma distri-

bution (Figure 3) and Beta distribution (Figure 4). All
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Figure 2: Histogram (blue) and best fits (red) according to (6)
for instance with J = 20, Beta distribution, η = 0.1;
the variable x is scaled to [0,1] by dividing the cycle
time by the longest path (sample size one million).

figures display the histogram of the sample (size one

million) and the best approximation according to equa-

tion (6). The four-parameter fit exhibits a sufficiently

high quality for all considered problems even though

the problem class depend on far more parameters. Re-

garding the 50-job instances, the distribution becomes

more symmetric.

Figure 3: Histogram (blue) of the cycle time x and best fits
(red) according to (6) for instance with J = 50,
Gamma distribution, η = 0.3 (sample size one
million).

As a next step, we compare dimensionless quantities.

Figure 5 shows the coefficient of variation ηout of the

objective function as a function of the coefficient of

variation ηin of the input. Over a large number of in-

stances, we see a stable parameter dependency. The be-

havior ηout vs. ηin is close to a power law

ηout = a ·ηb
in (7)

with a = 0.3227± 7 · 10−4 and b = 0.7874± 3 · 10−3

(red curve in Figure 5). In addition, the objective func-

tion varies less than the input quantities. This stability

in combination with the appropriate fit (6) allows an a

priori estimation because the fit parameters of (6) can be

estimated by a structural analysis (part of the Structure

Analyzer) based on what is called the grade distribu-

tion [19, 20]. Such an estimation can be refined by a

small sample. Therefore, after less runs the simulation

gives already insights of the stochastic behavior of the

objective function.

Figure 4: Histogram (blue) and best fits (red) according to (6)
for instance with J = 50, Beta distribution, η = 0.1; x

is scaled to [0,1] (sample size one million).

2.2 Results of the RCPSP

Let us now turn to the 10 job RCPSP. Mainly we are in-

terested in two aspects: First, does the fit ansatz (6) still

remain appropriate? Second, what kind of dependen-

cies are between the resource bound R and the stochas-

tic quantities μout and ηout?

Figure 6 shows the distribution (density function) of the

objective function for a 10 job Gamma distributed sam-

ple for various values of R. Note that if R ≥ Rmax(S)
the problem is unconstrained (independently of R). Re-

garding the first question, the answer is yes (such that

the histograms are not shown in Figure 6), equation (6)

covers all of the following cases: for the case R = 1, the

execution of the jobs is equivalent to a single chain. So

in this special case, the second factor in equation (6) be-

comes obsolete. For small values of R, the problem in-
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Figure 5: Coefficient of variation of the objective function ηout

as a function of the coefficient of the variation ηin of
the input distributions (J = 20, Gamma distribution,
100 instances per ηin value, sample size 10,000).
The errorbars indicate minimum, mean (crosses) and
maximum. The red curve depicts the power law
regression.

stance remains constrained for all possible realizations.

For further increasing R, the resultant distribution con-

tains a mixture of realizations, where the durations are

as such that the problem is de facto unconstrained, and

realizations, where the resource constraint is indeed ac-

tive. For R ≥ Rmax(S), the problem is unconstrained

for all duration vectors (d j). Typically, Rmax(S) ≤ J.

Figure 6: Distribution (density function) of the cycle time for
varying resource number: R = 1 (blue), 2 (orange), 3

(green), 4 (red) and 5 = Rmax (purple). All cases
match the fit (6). The sample size is 40,000 and
J = 10 with Gamma distribution.

Clearly, a decreasing R causes an increasing μout. Fig-

ures 7 and 8 provide a more detailed and quantitative

picture by showing μout and ηout as a function of R for

Figure 7: Dependecy of expectation value μout on the resource
number for a pool of Gamma and Beta distributed
instances with varying μ. We have J = 10 and
Rmax = 5 fixed such that the problems feels no
resource limitation for R ≥ 5. The errorbars are not
shown because they are negligible compering the size
of the crosses.

Figure 8: Dependecy of the coefficient of variation ηout on the
resource number for a pool of Gamma and Beta
distributed instances with varying μ. We have J = 10

and Rmax = 5 fixed such that the problems feels no
resource limitation for R ≥ 5. The errorbars are not
shown because they are negligible compering the size
of the crosses.

several instances. As it is the case in Figure 5, the de-

pendency can be catched by a rather simple regression.

Summarizing the previous examples, the stochatic char-

acteristic values and the shape of the distribution of the

cycle time as objective function are predictable both for

unconstrained and constrained PSP.
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3 Summary and Outlook
The purely continuous treatment reveals close connec-

tions between the input distributions and the distribu-

tion of the cycle time as objective function. Based on

simulation studies, it is feasible to estimate the shape

and all related stochastic properties of the resultant dis-

tribution since it turned out that the proposed product fit

suffices for all practical purposes even though it seems

hard to prove its validity by rigorous mathematical ar-

guments. Although solving a single realization of an

RCPSP remains challenging for a larger number of jobs,

considering a population significantly relaxes the situa-

tion, smooths discontinuous aspects of the combinato-

rial optimization problem and eventually enables state-

ments about confidence intervals of the cycle time hav-

ing practical relevance.

Without wanting to look to far into the problem land-

scape, it seems natural to attack more sophisticated

RCPSP (multi-mode and with transfer times and type

representatives, for instance) with the continuous ap-

proach and to investigate the influence of these ex-

tended features on the shape of the objective function

distribution. Hereby, questions of continuous depen-

dency and stability are of particular interest. Innovative

tools in event-discrete simulation and optimization will

provide valuable contribution to this.
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