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Abstract. When simulation experiments grow in scale,
a simulation environment providing appropriate compu-
tational resources is needed to produce results within a
reasonable time. Containerization is a promisingmethod
for creating such a scalable environment. This method
needs to be adapted to the simulation users’ demands
and should be easy to use for a project. Therefore, we
provide a concept for a container-based environment,
supporting various simulation projects, that dynamically
scales and adapts the simulation workload to the avail-
able hardware. The concept encapsulates the environ-
ment technologies and provides an access service to the
user for defining and editing simulation experiments and
retrieving results. We discuss requirements for combin-
ing simulation and containerization to support the transi-
tion to such a container-based simulation environment.
As a result, we see an opportunity to enhance large-
scale simulation experiments using container methods
and identify areas for further research.

Introduction

There are several fields of study in and adjacent to the

broader simulation domain with a significant rise in de-

mand for computational power. Prominent methods are

Simulation Based Optimization (SBO), Machine Learn-

ing (ML), and data-farming.

SBO combines simulation models with optimiza-

tion algorithms to find optimal or near-optimal solu-

tions for problems [1]. Various approaches utilize SBO

to assist in decision-making and finding ways to opti-

mize real-world systems (e.g., see Lidberg et al. [2],

Nikolopoulou and Ierapetritou [3], or Nguyen et al.

[4]). As most optimization algorithms require multiple

iterations over a system, increasing the number of si-

multaneously running versions of the model speeds up

the optimization process significantly.

The importance of ML as a research field was shown

in a recent study by Nature, which asked 1600 re-

searchers about how ML and Artificial Intelligence (AI)

in general will change in their future research. Among

the main benefits are improvements to data processing

and acquisition, and increased productivity [5]. Rai et

al. [6] comprehensively review the importance and re-

cent advances of ML for Industry 4.0 applications in

manufacturing and production systems. A substantial

amount of training data is necessary to create compre-

hensive ML-tools.

At the same time, the increasing complexity of sim-

ulation models and the number of simulation experi-

ments challenge the simulation environment: As com-

putational resources are constrained, the workload re-

quired for large-scale and complex simulations limits

the feasibility of performing these experiments.

Efforts to speed up simulation experiments have

been an active field of research since the 1970s [7]. The

ongoing trend of cloud computing, virtualization, and

containerization offers an exciting opportunity for cre-

ating a scalable simulation environment. The research

in this field is diverse and growing. Król et al. [8] devel-

oped Scalarm, an infrastructure for distributing simula-

tion workloads onto multiple computing nodes in het-

erogeneous environments. In more recent work, Anag-

nostou et al. [9] evaluated technological approaches

with their work on simulation experimentation frame-

works, applying a microservice-based auto-scaling ap-

proach utilizing MiCADO. MiCADO focuses on effi-

ciently utilizing cloud resources. It extends Kubernetes’

Application Programming Interface (API) objects with

its Application Description Templates (see [10]), mak-

ing it less universal.

Although these technologies have been around for

some years, a significant uptick in adopting these meth-

ods is not yet visible in the simulation community, nei-

ther from the practitioner nor the software developer

side. We attribute this to the perceived steep learning

curve of using containers and container management in

general. Especially packaging simulation workloads in

containers and their convenient use is still an open issue.

To approach this, we propose a container-based sim-
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ulation architecture that supports different experiment

setups, e.g., SBO, data-farming, or machine-learning-

based approaches. Our goal is to provide a foundation

for a heterogeneous environment that can dynamically

support multiple projects to scale and adapt the distri-

bution of computing resources.

This paper is structured as follows: First, we de-

scribe our concept for a container-based simulation en-

vironment from a simulationist’s point of view. We

briefly introduce the key technologies we need for this

concept: containers and container orchestration. The

following sections provide an overview of the key com-

ponents of our concept. The third section discusses the

requirements arising from combining simulation with

containers in the context of large-scale experiments.

Lastly, we summarize our research findings and give fu-

ture research opportunities.

1 Introduction to
containerization and
container orchestration.

Container technology is a type of operating system vir-

tualization, isolating a part from the underlying host

Operating System (OS) for the processes of the soft-

ware packaged in the container. Unlike a Virtual Ma-

chine (VM), containers utilize the OS and access the

hardware of the host computer directly. This makes

containers lightweight and flexible, as only the depen-

dencies to run the containerized software are necessary.

Thus, a container only brings its purpose-specific bi-

naries and files and uses general libraries and binaries

shared by the host OS. This is implemented by a soft-

ware called container runtime, which enables contain-

ers to communicate with the host kernel and run pro-

cesses, as stated by Hitchcock [11].

Containers are commonly created based on a con-

tainer image. These are created using container engines,

such as Docker, Podman, or Apptainer engines. All

container engines follow a similar approach to image

creation, utilizing a descriptive file that defines all steps

necessary to containerize a software package. As a gen-

eralization, we call this file the containerization file in

the following. Typically, a containerization file defines

the base image and the more specific parts of the con-

tainer built atop.

Containers are highly portable software packages,

able to run on various hardware configurations, from

multiple office Personal Computers (PCs) to full-

fledged servers, as long as the underlying OS supports

the specific container. Container orchestrators are used

to manage large amounts of containers. Therefore, they

are vital components for highly scalable simulation en-

vironments, where they handle large numbers of simul-

taneously running simulator instances.

There are several different orchestration software

packages on the market, but one of the most prominent

ones is Kubernetes, with which Google launches about

4 billion containers per week [12]. More information

on containers and Kubernetes can be found in Huawei

Technologies [13] and Poulton and Joglekar [14].

2 Container-based simulation
environment

Modern software systems that need to be highly scal-

able are typically built using a service-based architec-

ture, which is comprised of individually running ser-

vices that offer functionality to both other services and

the user. An approach to designing and scaling up these

software systems is containerization, where each ser-

vice runs within containers. Therefore, the number of

container instances providing a service can be increased

or decreased using container orchestration based on the

service’s demand and the system’s current load. This

approach efficiently addresses and uses large amounts

of heterogeneous hardware and maximizes the utiliza-

tion of existing hardware. Hence, enabling the dy-

namical adjustment of available computing resources to

different simulation projects, even when these projects

employ different simulation software packages.

Figure 1 provides an overview of the functional con-

cept of the proposed container-based simulation envi-

ronment and its main components. The Design of Ex-
periment Service represents the core user strategy on

what simulation settings need to be run; this can be an

optimizer, a reinforcement learning agent, or another

generator for the design of experiments. It generates

scenarios and commissions the system with their evalu-

ation. The Scenario Manager is responsible for manag-

ing the scenarios once they are in the system, schedul-

ing and monitoring their execution. Within our archi-

tecture, we consider a scenario to be a complete data set

representing a single instance of the modelled system.

We recognize three types of scenario data depending on

the viewpoint, with only the second one needed for a

complete system understanding.

1. Abstract meta-data, stored in the Scenario Status
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Figure 1: Concept of a container-based simulation
environment, consisting of four main components:
Design of Experiment Service (DoES), Scenario
Manager (SM), Translator and Simulation Runner (SR).

Database, like a global scenario ID or the process-

ing state of simulations desired for the scenario.

2. System description, stored in the Scenario Detail
Database, provides all system information to cre-

ate a valid model for the purpose.

3. Result data, stored in the Result Database, keeps

records of all Key Performance Indicators (KPIs)

and logs information desired from a scenario’s

simulation runs.

The Translator generates simulation-software-specific

instances of a scenario and followingly makes the sim-

ulation executable by the simulator. These executable

instances are run by the Simulation Runners, which re-

port results to the Scenario Manager after execution.

Each of these components is implemented as a ser-

vice within its container. This allows the available com-

puting resources to be adjusted depending on the de-

mand for these components and the system’s general

load. This setup, especially the Simulation Runners,

enables the user to benefit from dynamically address-

ing large amounts of computing resources. Therefore,

it allows for the adaptive provisioning of resources for

different simulation projects using different software

packages.

From our point of view, there are two general ways

to implement our concept: focusing on project-specific

components or aiming at reaching a universal system.

In the universal approach, the semantic transformation

from a project-specific to a universal model is done by

the Design of Experiment Service (DoES). All scenarios

handled and evaluated can, therefore, be stored in the

same structure, allowing the Scenario Database, Result
Database, and Translator to be universal as well. The

downside of this approach is the need to transform and

store scenarios, and therefore their model descriptions,

in a generic format. This makes the creation of these

three universal components very complex.

The more pragmatic approach is to design these

components in a project-specific way, as indicated by

the colouring scheme in Figure 1. This is, in our view,

the more worthwhile option. However, this requires in-

dividually building database schemes and Translators
for each project. The complexity of these components

is significantly smaller, as a scenario entry only needs

to hold a few key parameters, and the Translator can

be specialized for the project. A further benefit of the

project-specific approach is the improved possibilities

for fine-tuning and adapting the model structure to the

project-related domain.

2.1 Design of Experiment Service

As we mentioned earlier, the DoESs represent the

scenario-creating elements of a simulation-based sys-

tem: for example, the optimizer creating solution can-
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didates and sending them off to be evaluated or the data-

farming service implementing a given design of exper-

iments. Therefore, the DoES represents the interface

to the simulation environment and is necessary to en-

ter simulation workloads. Via this interface, the setup

of all scenarios is defined, which comprises the data re-

quired for generating the models, necessary computing

restrictions, and other requirements.

2.2 Scenario Manager

The Scenario Manager (SM) is the management com-

ponent of our concept and has various functions. Based

on the project-specific simulation data provided by the

DoES, it manages scenarios and coordinates their ex-

ecution on the Simulation Runners (SRs) using the

Translators for model generation. Furthermore, it ac-

tively monitors the SRs, ensuring comprehensive over-

sight by consistently tracking the status of each sce-

nario. Lastly, the SM also organizes the simulation re-

sults in databases and provides access to analyze the

generated data.

The SM and its databases are implemented as con-

tainers. While the Project Database and Scenario
Status Databases are universal, the Scenario Detail
Database and Scenario Result Databases are project-

specific deployments. The particular configuration of

each project-specific database deployment depends on

the scale of the experiment. Therefore, the configura-

tion can range from one database container to complex

deployments consisting of multiple database containers

and their infrastructure, e.g., load balancers.

2.3 Translator

The Translators generate simulator-specific simulation

models based on the scenarios passed to it by the SM.

The data needed is pulled from the Scenario Detail
Database. The specific implementation of the Trans-
lator highly depends on the respective project approach

and the capabilities of the chosen modelling tool. A

simple Translator would be used to forward parame-

ters from the Scenario Detail Database to the SRs that

already have a base model implemented. More so-

phisticated Translators may use the data from the Sce-
nario Detail Database to automatically generate exe-

cutable simulation models. The main technologies used

to implement Translators come from the fields of model

transformation and automated model generation. We

refer to published research for the specific implementa-

tion of Translators. Thiers et al. [15] comprehensively

introduce this research subject. They furthermore dis-

cuss the large variety of system description languages

and propose a methodology for one system descrip-

tion language combined with a transformation step that

loosely couples other languages to the back-end bridg-

ing abstraction language.

2.4 Simulation Runner

The SRs provide simulation execution as a service.

These containers encapsulate the simulation engine

and, when started, run the actual simulations. Differ-

ent containers providing different simulation engines

can be deployed, matching the projects run. After the

scenarios are generated by the Translator, they get for-

warded to the SR with the specified simulation engine

required by the design.

The number of SRs is highly dynamic and is auto-

matically scaled up and down based on the available

computing resources. Figure 2 illustrates this breath-

ing characteristic of the SRs. During idle time, only

the template of a SR exists (1). When the Translator
generates models that require an idle SR, the deploy-

ment increases the number of SRs to a size that fits the

available hardware and the number of simultaneous in-

stances defined for this project, visualized in (2) and (3).

If demand decreases, the number of SRs decreases (4)

and goes back to zero if this specific simulation engine

is no longer needed.

3 Requirements to use
containerization for
simulation

To make simulation environments based on containers

practicable for a user, some requirements must be met

for simulation packages. Although containerization and

running software as services from inside containers are

generally not new concepts, they are rather unexplored

in the simulation community. Therefore, it is necessary

to illustrate how the specific use case of simulation is

affected by containerization. We found that container-

ization, in combination with simulation, sets specific re-

quirements that can be grouped into four general fields:

• Modeling

• Containerization
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Figure 2: The Simulation Runners automatically scales up and down, based on the demand created by the scheduled scenarios of
the Scenario Manager.

• Integration

• Licensing

We amend these requirements from [16] with the find-

ings from our concept in the following.

3.1 Modeling requirements

The key modelling requirement on a simulation pack-

age for usage in large-scale systems is the model gener-

ation capability by external means. We found that simu-

lation packages allow the automation of model building

to different degrees, which we categorize into five lev-

els:

1. No automation

2. Parameterization of a hand-made model

3. Bootstrapping models based on external data

4. External generation of model files

5. Online model generation using an API

In the proposed architecture for a container-based

simulation environment, the Translator component

handles automated model generation. To this end, some

degree of external model generation needs to be sup-

ported by the simulation tool. Depending on the project,

higher levels of model generation may be required, re-

stricting the choice of simulators.

3.2 Containerization Requirements

The containerization requirements focus on what

is needed to use simulation software efficiently in

container-based, scalable environments. They are cat-

egorized into three topics: needs imposed by the OS,

constraints due to the ephemeral nature of containerized

applications, and requirements of the containerization

process.

3.2.1 Operating System

An important requirement for the container-based sim-

ulation environment is providing the OS needed for the

simulation software. As we mentioned in Section 1,

containers are a form of OS virtualization, requiring a

host OS that supports the container. The majority of

currently used containers are Linux-based, requiring a

host that runs Debian, RedHat, Ubuntu, or a similar OS.

Consequently, most of the current container ecosystem,

i.e., the applications and tools used for running contain-

ers in a scalable environment, is tuned for Linux con-

tainers.

In contrast, as shown in Table 1, a significant

amount of software currently used by the simulation

community for modelling and simulation is based on

Windows. For simulation software that solely runs on

Windows, Windows containers are required. Running

Windows containers in orchestrator systems leads to hy-

brid environments, consisting of both Linux and Win-

dows hosts, as the management layers of container or-

chestrators like Kubernetes require Linux hosts. Such

hybrid environments can be considered less efficient

than their Linux-only counterparts, as resources for

both host systems need to be provided and managed.

This results in worse utilization of the available hard-

ware or increased efforts due to the need to dynamically

adjust host system allocation depending on the observed

demand. An ideal situation would be the availability of

Linux options for all simulation software packages; as

this is not the case, we see at least larger systems work-

ing on a hybrid basis for the foreseeable future.
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Simulation tool Supports Windows? Supports Linux? Supports macOS?

ANSYS yes yes no

AnyLogic yes yes yes

FlexSim yes no no

MATLAB/Simulink yes yes yes

OpenModelica yes yes yes

Simio yes no no

Table 1: List of simulation tools and the support of Linux-based OSs.

3.2.2 Ephemeral simulation containers

Containers may be killed at any time during their lifecy-

cle. This can be caused by errors in their internal soft-

ware or changes in maintenance or load control. This

characteristic is called ephemeral. A system that de-

pends on containers to provide functionality, therefore,

needs to address this properly. The following are ideas

to approach this problem:

Restarting failed simulation containers intuitively

emerges as the simplest method to address this is-

sue. Most container orchestrators are declarative, which

means they try to achieve the desired state defined in

the files posted to the API server of the orchestrator.

Controllers continuously check the observed state of the

cluster against the desired state and perform the tasks

necessary to achieve the desired state if deviation is de-

tected. To effectively utilize this feature of container

orchestrators for large-scale simulation experiments, a

controller that keeps track of the failed scenarios is es-

sential. This functionality would be covered by the Sce-
nario Manager in the previously proposed architecture.

If a simulation container is ended prematurely, the

state of the model is lost, and the allocated resources

for this process are wasted. Extending the restart of the

containers by keeping track and storing the progress
of the simulation run is a comprehensible next step.

For this, continuous updates of the current simulation

state, or at the least regular snapshots, must be kept

in storage. This causes a significant amount of data

to be transferred and stored. These resource-intensive

tasks likely harm simulation speed: the theoretical per-

formance gained through restarting the simulation con-

tainer from a cached image of the last state will most

likely be compromised by the processes necessary to

create these images. From the authors’ point of view,

this approach is only feasible in an environment where

successfully finishing simulation runs is otherwise un-

likely, e.g., due to extensive simulation execution time

or unstable computing hardware.

Most simulation experiments utilize replications to

achieve sufficient confidence intervals. Therefore, in-
creasing the number of replications for each sce-
nario would be an efficient way to add redundancy and

counteract the loss of simulation runs. Depending on

stability, this method would not create a significant mar-

gin of load to the cluster, ensuring efficient utilization of

the computing hardware available. However, increas-

ing the number of replications for the scenarios does

not ensure the successful execution of any scenario, as

even a large number of replications could fail. Suppose

the probability of failure of the container/model can be

estimated. In that case, the required number of repli-

cas needed to achieve a certain coverage can easily be

calculated within the desired confidence.

3.2.3 Container creation

The last containerization requirement addresses con-

straints for containerizing simulation software.

To containerize a simulation model, it is necessary

to either have an existing base image of your simulator

or a base image that supports your simulator of choice.

The latter option requires manually adding the simula-

tion engine to the base image, which needs additional

effort. This would usually be done with the help of a

package manager or an installation method that does not

require user interaction. If the simulation tool does not

support these methods, a more tedious way of packag-

ing the simulation engine must be utilized, e.g., emulat-

ing user inputs in the containerization file.

An optimized containerization process for simula-

tion models would mean that simulation package devel-

opers and vendors provide usable base images of their
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simulation software. With functioning base images, the

SRs can easily be populated by the generated models

from the Translators. Although some simulators al-

ready provide base images, e.g., MATLAB, and some

container images for simulators created by the commu-

nity, e.g. for SimPy, this is not the norm.

3.3 Integration requirements

The integration requirements describe how well a simu-

lation package can be integrated into a container-based

software system, e.g., how it can be started and ex-

ecuted and how results are managed. Containerized

software usually runs headless, meaning that a Graph-

ical User Interface (GUI) is typically unavailable dur-

ing runtime. Therefore, in a containerized setup, it is

strongly preferred to have a simulator that supports ex-

ecution without a GUI. Suppose the simulation software

is dependent on interactions with a graphical user inter-

face. In that case, it is not well suited for a scaled-up

environment as the manual interaction also needs to be

scaled accordingly, which is typically not feasible.

Besides running, starting the simulation is also a

concern for integration. Although an essential and ev-

erywhere available option in past days, starting the sim-

ulation run from the command line is no longer gener-

ally available. Similar to manual interactions with the

model during runtime, using a GUI is also unfeasible

for environments where many simulations are started

in parallel. Although there are makeshift approaches,

including the emulation of inputs from keyboard and

mouse, that help automate these interactions, their im-

plementation is typically less than ideal.

Most simulation execution environments used in

simulation packages are not (yet) designed for dis-

tributed infrastructures. An experiment manager and an

external way of triggering a simulation run are neces-

sary for such systems. The most common way to do

this is by using command-line interfaces. Starting sim-

ulations using an API is an even more convenient op-

tion.

Other important considerations are connectivity to

databases and the possibilities to write results. If this

is not possible, other options are required to parameter-

ize the simulation model and gain access to results. At

least the results must be exportable to an external file,

which can then be evaluated and transferred by addi-

tional software in the container. This, of course, makes

the container much more complex to create, but espe-

cially for older simulation packages, it may be the only

available option.

3.4 Licensing Requirements

The last requirement for combining container technolo-

gies and simulation we see is the licensing of simu-

lation software. Software vendors have different ap-

proaches to licensing their products, which may impact

the cost structure of using this software in a container-

ized, highly scalable environment. Simulation pack-

ages, where costs only depend on the model develop-

ment environment, allow very flexible scaling of the

simulation to new or different projects. Licensing on a

per-core/seat/user basis is also suitable for a container-

ized computing infrastructure but can get quite costly if

sufficient hardware is available. Moreover, the licensing

agreement should be thoroughly reviewed to determine

whether the use in container environments is allowed.

Besides cost and permissibility, another noteworthy

side of licensing is its technical enforcement. For a dy-

namic environment, concurrent licensing via licensing

servers is ideal. In contrast, licensing schemes enforced

by hardware restrictions put significant limitations on

a containerized simulation platform. Examples of this

approach would be licensing codes tailored to a specific

computer or hardware keys provided as USB dongles.

4 Conclusion and further
research

This paper proposes a high-level concept for a

container-based simulation environment primed to meet

the growing demand for large-scale simulation experi-

ments. We introduced the four key components of our

concept, consisting of the Design of Experiment Service
(DoES) as a central service that allows access to the

environment and defines all specifics of an experiment

setup, the Scenario Manager (SM) as a management

service for handling large numbers of scenarios, the

Translator as a translation interface that generates sim-

ulation models from different description languages,

and the Simulation Runners (SRs) that provide con-

tainerized simulators which can be dynamically scaled

up and down based on demand.

To support the transition to such a container-based

simulation environment, we investigated what require-

ments arise from the combination of simulation and

containerization. The described requirements cover

various fields and must be considered when container-
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izing simulation models. General modelling require-

ments describe the importance of populating the simu-

lation containers with models.

The next step of our research will be to imple-

ment this concept, as we see a need to enhance large-

scale simulation experiments and use container meth-

ods. This includes containerizing and testing different

simulation software packages and assessing to what ex-

tent the simulation environment can support their dy-

namic management. Another future step is to evaluate

the environment on different hardware setups. Other

exciting areas of future research may look at different

concepts, for example, a more universal DoES or strate-

gies targeted to a specific hardware configuration.
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