
Simulation-enhanced Action-oriented Process 
Mining in Production and Logistics 

Felix Özkul1*, Robin Sutherland1, Sigrid Wenzel1 
1Department Organization of Production and Factory Planning (pfp), University of Kassel, Kurt-Wolters-Str. 3, 

34125 Kassel, Germany; *  

Abstract. Process mining is increasingly being used to 
gain insights into processes based on operational data. 
Recently, approaches have been researched as to how 
these findings can be automatically transferred into pro-
cess-regulating actions during system operation to cor-
rect deviations between the actual and target process in 
real time. However, the implementation of such action-
oriented process mining mechanisms requires sufficient 
testing of the implemented actions in the application to 
prevent undesirable side effects in the real system. This 
article explains how discrete-event simulation in produc-
tion and logistics can be used to mitigate risks in the con-
text of implementing action-oriented process mining 
through the use of an emulation model. For this purpose, 
we present simulation-enhanced action-oriented process 
mining as well as a proof-of-concept implementation 
based on a use case. 

Introduction 
Discrete-event simulation (DES) has proven itself across 
many industries as a planning tool for production and lo-
gistics systems (e.g., see [1][2]). Its application enables 
users to analyze "what-if" or "how-to-achieve" questions 
by executing simulation experiments during the planning 
phase of a production or logistics system. The utilization 
of simulation during commissioning or system operation 
is less mature, but the potential benefits of using simula-
tion during these system life cycle phases are also appar-
ent (see [3]). In the following, a distinction is made be-
tween the levels of the technical system and the control 
system with respect to systems in production and logis-
tics. This distinction can also be made with appropriate 
modeling in the simulation application, so that there is a 
real technical system, a real control system, a simulated 
technical system, and a simulated control system. In the 
context of this paper, emulation describes the use of a real 
control system being used in a simulated technical system 

(other types of coupling are described in [4]). The simu-
lated technical system thus receives the same inputs that 
the emulated real technical system would receive, and the 
real control system can thus be tested simulatively.  

DES can be used in combination with other digital 
methods such as process mining, for example, to reduce 
the effort involved in creating simulation models, or to 
simulatively generate synthetic input data for the appli-
cation of process mining techniques [5]. The added value 
of the combined use of both methods has been presented 
in the pertinent scientific literature – also for the area of 
production and logistics [6]. 

Process mining is a research area at the intersection 
of data science and process science [7]. Process mining 
is mainly used to analyze processes based on past opera-
tional data (see [8]) and its use is favored by the increas-
ing prevalence of information technology systems in pro-
duction and logistics [6]. The classic types of process 
mining are process discovery, conformance checking 
(see Section 1), process enhancement, and more recently, 
performance analysis, comparative process mining, pre-
dictive process mining (machine learning-supported pro-
cess mining), and action-oriented process mining (see 
Section 1; [7]). These types of process mining have some 
overlaps in terms of both methodology and application.  

In combination with DES, the combined use of both 
methods can be used to gain insights into both the past 
and the future. Not part of this given time continuum is 
the present and the associated consideration of the com-
bined use of methods during ongoing system operation. 
Input data for process mining techniques is convention-
ally stored in so-called event logs (see Section 1 for more 
details). The process information stored in these event 
logs can be used, for example, to extract models describ-
ing process behavior (process discovery), and to retro-
spectively identify deviations between the target and ac-
tual process (conformance checking). However, for pro-
cess mining to be used in an action-oriented manner in 
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the current system operation, the process-related insight 
must be gained in real time, i.e., possibly before a process 
instance is completed and thus before the complete event 
log is generated. Streaming process mining methods (al-
ternatively online process mining) are suitable for this 
purpose (see [9]). Streaming process mining analyzes so-
called event streams (see Section 1) instead of conven-
tional event logs [9], thereby gaining knowledge about 
process instances even before they are completed and, if 
necessary, enabling actions that regulate process in-
stances. 

Action-oriented process mining aims to generate 
these diagnostic-based actions (see [7]), thereby bridging 
the gap between insight and action that conventional pro-
cess mining cannot. However, the implementation of 
such action-oriented process mining-based process con-
trol mechanisms has not yet been researched in detail in 
the area of production and logistics, and the risks associ-
ated with the implementation of action-oriented process 
mining are obvious. For example, in case of failure, test-
ing on the real system may affect its operational perfor-
mance (e.g., due to unforeseen system failures caused by 
actions of the action-oriented process mining mecha-
nism). DES could, on the one hand, help mitigate these 
risks by generating event streams for different process 
scenarios, which are used as input resources for action-
oriented process mining to analyze the different response 
actions (e.g., an online adjustment of machine parameters 
or job scheduling) as well as their effects. On the other 
hand, as an element of decision support, DES can help to 
determine the impact of non-conformity with regard to 
process instances to gain predictive insights into the nec-
essary process control actions. This enables users to mit-
igate the risks associated with the implementation of ac-
tion-oriented process mining and helps increasing its ef-
fectiveness in practice. Our approach uses simulation as 
an emulation model of an underlying technical system to 
test an action-oriented process mining mechanism. 

The paper is structured as follows: Section 1 explains 
the key process mining terms. Section 2 specifies theo-
retical scenarios for simulation-enhanced action-ori-
ented process mining. Section 3 presents a use case based 
on a proof-of-concept implementation. The paper con-
cludes with a summary and a research outlook. 

1 Process Mining Terms and 
Context 

A process in the context of process mining refers to "a 
coherent series of changes that unfold over time and oc-
cur at multiple levels" ([10], p. 3). These changes are trig-
gered by events. Event logs record the execution of pro-
cesses based on events that start or end activities. Process 
and activity executions represent so-called instances. A 
process instance is also referred to as a case. Each case 
can be described by a sequence of events or activities, 
which is logged as a trace in the event log. In other words, 
event logs are a multiset of traces, with each trace being 
a sequence of events ([7], def. 3).  

Events are assigned to their respective cases using a 
corresponding case identifier. Events and traces can be 
described in more detail using additional information 
(such as resources performing activities). In practical use, 
event logs log a finite number of events. Different types 
of process mining can then be applied on the basis of 
these logged events. Processes (as defined above) can be 
mapped and analyzed using process models (e.g., models 
in Petri net notation [11]). 

Conformance checking can be used to check how 
well a process model is able to replay the process behav-
ior observed in an event log. The scientific literature 
mentions various conformance checking methods, such 
as footprints, token-based replay (for Petri nets), and 
alignments [12]. The ability of a process model to repro-
duce recorded process behavior is referred to as its fitness 
[8][12] and is the most important indicator for describing 
process model quality (the other process model quality 
indicators are precision, generalization, and simplicity, 
see [12]). On the one hand, conformance checking can be 
used to quantify the quality of a modelled or extracted 
process model in relation to an event log (i.e., recorded 
process behavior). On the other hand, it is also possible 
to analyze the conformity of the logged cases in relation 
to a normative process model (i.e., a binding model spec-
ifying the target process). This approach of conformance 
checking is central to the implementation of simulation-
enhanced action-oriented process mining. 

1.1 Streaming Process Mining 
The examination of cases using event logs enables an 

a posteriori determination of conformity in relation to a 
normative process model. However, for a process in-
stance to be corrected during its execution in a production 
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and logistics system the conformity assessment must be 
carried out a priori with regard to the completion of the 
process instance. This requirement can be met by analyz-
ing event streams.  

Van Zelst et al. ([13], p. 7) define an event stream as 
"a continuous stream of events executed in context of an 
underlying business process". An event stream comprises 
a – potentially infinite – number of events (as defined 
above). The investigation of event streams is the subject 
of streaming process mining and includes streaming pro-
cess discovery and online conformance checking [9]. 
Event stream analysis allows for the processing of very 
large event logs (like event logs too large to be stored in 
memory) or for continuous monitoring of processes. The 
latter is important for our contribution in the context of 
production and logistics. In principle, event streams can 
be analyzed using conventional process mining algo-
rithms by combining events into batches and then pro-
cessing them like event logs. However, there are also 
dedicated algorithms that enable online analyses (e.g., 
prefix alignments [14] or the analysis of behavioral pat-
terns ([15], see Section 2) for conformance checking). 
Van Zelst et al. [13] present an architecture (S-BAR) for 
the application of common process discovery algorithms 
in online settings using abstract representations. These 
techniques focus on the investigation of activity relation-
ships and control flow. In addition, Stertz et al. [16] pre-
sent an approach that analyzes the temporal relationship 
between activities using a temporal profile. A temporal 
profile contains information about the (stochastically) 
expected durations of activities as well as their temporal 
distance and a normative process model can be infused 
with it to allow the application of temporal conformance 
checking (see Figure 1 "temporal items"). A temporal 
profile can, for example, be extracted from a normative 
process execution log (i.e., a log containing valid traces 
of a target process) which contains information about the 
start and end times of activities (i.e., start and end events) 
or on the basis of expert domain knowledge. New events 
are compared with a temporal profile and time-related 
outliers are detected by calculating their Z-score [17]. 
Temporal conformance can also be checked in the event 
stream in addition to the control flow view. The approach 
in this paper checks event streams based on behavioral 
conformance (see [15]) and temporal conformance [16] 
to monitor process execution online.  

1.2 Action-oriented Process Mining 
Streaming conformance checking based on event streams 
enables online monitoring of processes. Action-oriented 
process mining builds on this and uses streaming process 
mining to automatically generate actions based on de-
tected deviations from target processes (i.e., non-con-
formities) that imply risks associated with the violation 
of process constraints. In the context of production and 
logistics, constraints can be, for example, case-specific 
production deadlines that are about to be missed (viola-
tion of temporal conformance) or the prescribed produc-
tion sequences that are not being followed in the ongoing 
process (violation of behavioral conformance). 

Park and Van der Aalst [18] provide a comprehensive 
framework for implementing action-oriented process 
mining for business processes with a focus on operational 
support (more in [8]). During the execution of business 
processes events are logged in a real information system 
and an event stream is generated which is then analyzed 
by the constraint monitor [18]. The constraint monitor 
analyzes the event stream given the abovementioned con-
straints (which, in our approach, are temporal and behav-
ioral constraints), that are formalized in a constraint for-
mula (e.g., in a production setting, one such formula 
could evaluate if a product is manufactured given a pre-
scribed production sequence). The analysis of events 
given the constraint formulae yields constraint instances 
which are then sent as a constraint instance stream to the 
action controller [18]. The action controller evaluates the 
incoming constraint instances and generates an action 
based on the evaluation result and given an action for-
mula [18]. The action formula takes in the constraint in-
stance stream and a time window to produce a set of 
transactions (i.e., operations which the underlying infor-
mation system can perform). An example of such an ac-
tion in a production setting would be to increase an or-
der’s priority if production delays (i.e., temporal non-
conformance) are diagnosed.  

This paper builds on the framework of Park and Van 
der Aalst [18] and extends it with simulation-related 
components focusing on the implementation of action-
oriented process mining in production and logistics.  

Drieschner et al. [19] present an approach that focus-
ses on simulation as a learning tool for action-oriented 
process mining. The similarity between this approach and 
our contribution is that both approaches use simulation as 
a data generator for process mining (see Section 2). How-
ever, the focus of Drieschner et al. [19] is pedagogical 
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and focuses on user interaction. Our approach focuses on 
the automated testing of an implemented action-oriented 
process mining mechanism. For this purpose, the simula-
tion model emulates the real system and simulation runs 
are conducted.

2 Simulation-enhanced Action-
oriented Process Mining

Based on the framework of Park and Van der Aalst [18], 
the following Figure 1 shows a possible architecture for 
simulation-enhanced action-oriented process mining. 
During the execution of a simulation model, a simula-
tion-generated event stream is created whose events are 
recorded by an event monitor and evaluated with regard 
to their temporal and behavioral conformance. For this 
purpose, the approach of Stertz et al. [16] is applied on 
the basis of a normative temporal profile and the formu-
lation of temporal constraints to identify temporal outli-
ers within the event stream. Temporal constraints can be 
formulated, for example, by target dates that are set for 
the completion of an order. If, for example, a processing 
activity occurs too late or takes too long, this deviation is 
recognized via temporal conformance checking. In addi-
tion, the event monitor monitors the behavioral conform-
ance of incoming events. The behavioral conformance is 
assessed by analyzing behavioral patterns (i.e., a set of 
activities and possible control flow relations [15]) and a 
reference behavioral model (expressed as the set of pre-
scribed behavioral patterns which are expected for the 

underlying process (see [15]). This is shown as the refer-
ence behavioral model in Figure 1. This granular per-
spective on the control-flow allows an in-vivo analysis of 
singular observable behavioral patterns (which can be in-
ferred from events but at a higher level of abstraction) 
during process execution and allows for the calculation 
of three distinct key indicators (see [15]): Conformance
(indicating the correctness of the observed behavior), 
completeness (indicating case progression), and confi-
dence (indicating the expected stability of the conform-
ance).  

Checked events are appended to the checked event 
stream and relayed to the simulation action controller. 
Depending on the event status (i.e., whether an event con-
forms or not), a suitable event routine is selected from the 
event routine space and communicated to the simulation 
model. Since actions in the (discrete-event) simulation 
model are generated by executing event routines, we use 
the term event routine space instead of the action space 
(cf. [18]). We refer to the simulation action controller as 
the component that fulfils the tasks of the action control-
ler (see [18]). If specific behavioral or temporal non-con-
formity is detected for an event, a routine for handling 
these deviating events is automatically selected (if an 
event conforms, the default event routine is executed).
The described workflow is shown in Figure 2.  

The effects of the decisions by the simulation action 
controller can then be observed during the remainder of 
the simulation runs. Based on the simulation model con-
figuration, event streams containing non-conforming 
events, i.e., temporal or behavioral imperfections, can be 

Figure 1: Architecture of the presented approach.
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generated during a simulation run to invoke automatic ac-
tions of the simulation action controller, the effects of 
which are assessed in the simulation.

This allows the action controller to be thoroughly 
tested simulatively before it is implemented in the real 

system. Risks relating to the impairment of process 
sequences in the real system can be mitigated in this way. 
The results of the simulation application can be statisti-
cally validated through systematic experimental design 
and, in the context of the implementation of action-ori-
ented process mining, should also capture rare events and 
faults that are difficult to observe in real system opera-
tion. The specific number of simulation runs depends on 
the specific use case and the number of different scenar-
ios which have to be addressed by the simulation action 
controller. This ensures that the system behavior for these 
edge cases is also considered in the action controller of 
the real system. This is the qualitative added value of the 
proposed approach: Based on the execution of simulation 
experiments that cover the range of expected cases of 

process deviations in the real system, action-oriented pro-
cess mining can be implemented without having to make 
any changes to the real system. Instead, the simulation is 
used as an emulation model for the real control system 
and risks associated with the action-oriented process 
mining implementation are mitigated.  

3 Use Case 
The following use case demonstrates the idea behind sim-
ulation-enhanced action-oriented process mining (see 
Section 1) using a practical case study and implements 
the architecture in Figure 1. 

3.1 Application System  
The application system is a conveyor system on a univer-
sity laboratory scale, Figure 3 shows the corresponding 
simulation model.

Starting from the source conveyor, load units are fed 
onto the main conveyor. Load units carry objects that 
have an object type that determines the target production 
sequence on the machines M1-M6 and one load unit cor-
responds to one case. In addition, there are various stop-
ping points (H1-H7) on the main conveyor, which can 
read and write to RFID tags attached to the load units. In 
addition to the conveyed object type, other load unit-re-
lated information (attributes) is also stored on the RFID 
tags, such as the priority of the order (high/low), the tar-
get time for completion of the order and the next machine 
in the object type-specific processing sequence. The ma-

Figure 3: Simulation model of the laboratory system.

Figure 2: Information flow of the outlined approach.
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chines are located on side conveyors, which are con-
nected to the main conveyor via conveyor switches. Side 
conveyors have a certain load unit capacity and load units 
can only be discharged onto a side conveyor if it can ac-
commodate further load units. At the conveyor switches, 
load units with high priority have right of way; for load 
units with the same priority, first in first out (FIFO) ap-
plies. 

We formalize a workflow net (a Petri net with certain 
properties, see [8]), which is a simplified process model 
for the behavior of the load units (cases) in the applica-
tion system (Figure 4). The normative workflow net ex-
hibits maximum fitness in relation to the underlying con-
veyor system. However, it enables additional behavior 
that is not possible in the real system due to the object 
type-specific processing sequences (i.e., its precision is 
low). To increase the precision of the model, the formal-
ization of color sets and the introduction of transition 
guards would be appropriate. For simplicity, however, we 
decided not to include a colored Petri net of the load unit 
process. Starting from the source ('exit_source'), the var-
ious stopping points on the main conveyor are controlled 
and logging events are fired ('log_at_H*').

Depending on the conveyed object type on the load 
unit, its processing progress and the availability of side 
conveyor capacity, the load units are processed at the ma-
chines ('processing_on_M*') or conveyed in a waiting 
loop. Skips are modelled as silent transitions; load units 
that cannot be processed at their destination machine will 
still pass the subsequent stopping points on the main con-
veyor (i.e., it is not possible to skip logging activities, 

which is coherent with respect to the layout in Figure 3). 
Furthermore, the process model is infused with a tem-
poral profile, which is based upon domain knowledge 
about the controls of the reference system. For clarity, we 
graphically omit the temporal distances between all ac-
tivities and activity (transition) durations (examples for
both are highlighted in blue in Figure 4).   

3.2 Use Case
The goal of the use case is to illustrate how the approach 
can handle incorrect processing sequences (behavioral 
non-conformance) and processing delays (temporal non-
conformance) and how automated actions can address 
them. 

Due to the stochastic order loading of different object 
types, congestion of load units can occur in the system, 
which delays the processing of orders. Furthermore, it is 
assumed that the reading of the RFID tags – which are 
placed on the load units – is not always error-free, and 
that read and write errors can occur. A case is considered 
compliant if its processing sequence corresponds to the 
target processing sequence of its object type and the order 
is completed in time. If the target processing sequence is 
violated, the event monitor detects this deviation as be-
havioral non-conformance. Delays related to the pro-
cessing of load units may lead to the detection of tem-
poral non-conformance (see Section 2). In case of behav-
ioral non-conformance, rerouting to the original target 
machine is defined as an automated action in the action 
space of the action controller.

In case of temporal non-conformance, the priority of 

Figure 4: Workflow-net of the load unit process.
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a load unit must be increased if there is a delay so that it 
can be routed to the conveyor switches more quickly if 
necessary. In the event of temporal non-conformance of 
a processing activity, it must also be assumed that a ma-
chine requires maintenance. A maintenance worker 
should therefore be sent out in this case to carry out the 
maintenance as quickly as possible. 

3.3 Technical Implementation
We implement the architecture from Figure 1 using 
AnyLogic 8 and open-source process mining software 
systems. Figure 5 shows the proof-of-concept implemen-
tation.

First, a simulation model is built and an experiment 
template is implemented. The current AnyLogic software 
ecosystem provides a template for Reinforcement Learn-
ing (RL) (i.e., the possibility to define observations, ac-
tions and configurations) which can be adapted because – 
similarly to RL – our approach utilizes the observation 
and action capabilities in the simulation context.

Therefore, we repurpose the RL pipeline to imple-
ment simulation-enhanced action-oriented process min-
ing. The simulation model containing the experiment 
template is exported to a standalone (Java) model, which 
is bi-directionally linked to a Python Jupyter Notebook
using the Alpyne software library [20]. The exported 

model is configured to invoke actions based on certain 
key events, those being the logging events shown in Fig-
ure 4 at the stopping points (H1-H6). Whenever a logging 
event occurs, the simulation engine pauses the simulation 
run and passes the events to the Python simulation con-
troller, which implements Alpyne as its simulation inter-
face. The observed event is then relayed to the event 
monitor which transforms and logs the observed event in 
a Pandas (https://pandas.pydata.org/docs/) Dataframe ob-
ject (‘Single Event Dataframe’) to perform temporal and 
behavioral conformance checking. Software systems for 
the implementation of streaming conformance checking 
(the central component of the event monitor) are cur-
rently only available to a limited extent (see [21]). The 
comprehensive Python-based open-source framework 
PM4Py [22] implements the temporal conformance 
checking approach of Stertz et al. [16]. Burattin [21] pro-
vides an open-source streaming process mining software 
named Beamline, which is available for Java and Python 
(pyBeamline). Our work implements pyBeamline’s be-
havioral conformance checking [15][21] and provides a 
compact implementation. Based on a reference event log 
(which can be generated, for example, by simulating the 
workflow net shown in Figure 4 or by exporting traces 
from a valid simulation model after the warm-up phase) 
a normative behavioral model is initially mined with py-
Beamline and new event instances are checked against it.
In order to assess the behavioral conformance of a run-
ning case, we implement a second Dataframe object to 
which each event is appended (technically, at each itera-
tion the ‘Single Event Dataframe’ and the ‘Aggregated 
Event Dataframe’ are concatenated). This step is compu-
tationally costly but necessary to contextualize events 
with regard to the previous events of their running case. 
Furthermore, each event is checked against the temporal 
profile of the normative process which is created using 
PM4Py (the computation of a temporal profile requires 
start and end timestamps for activities). The PM4Py im-
plementation additionally requires floating point num-
bers as timestamps whereas other algorithms often work 
based on datetime formatted timestamps. After conform-
ance checking, the results of the check are relayed to the
simulation action controller which then chooses an ap-
propriate event routine (action). If the event monitor does 
not register non-conformance, the default routing logic is 
applied to the load unit (see Section 3.1). If, for example, 
the event monitor detects that a case is being processed 
late (temporal non-conformance), the simulation action 
controller increases its priority to enable faster transport 

Figure 5: Structure of the proof-of-concept implementation.
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to the processing machines. After selecting a suitable ac-
tion, it is communicated to the simulation model via Al-
pyne and the simulation engine continues the simulation 
run. The control logic of the simulation can be modified 
by the simulation controller (with appropriate implemen-
tation in the simulation model) to specifically generate 
non-conforming events, for example by generating mis-
reads at the stopping points with a predetermined proba-
bility, which ensures that load units are incorrectly 
ejected or not ejected. In this way, the components of ac-
tion-oriented process mining can be specifically checked 
within the framework of simulation experiments with re-
gard to their ability to detect and recommend and thus 
their suitability as operational support before they are im-
plemented in the real system (see Section 2). This avoids 
risks associated with undesirable side effects in reality. 

4 Summary and Outlook 
This article presents a combination approach of discrete-
event simulation and process mining, in which a simula-
tion model is used as an emulation model for the imple-
mentation of action-oriented process mining. The quali-
tative added value lies in the mitigation of risks associ-
ated with the automated process-regulating actions in 
production and logistics systems. Furthermore, the use of 
simulation allows the introduction of targeted imperfec-
tions to improve the testing of action-oriented process 
mining mechanisms. However, the current results can 
only be seen as a starting point for subsequent research 
challenges. These concern, among other things, the incor-
poration of a more dynamic action space and the explicit 
consideration of data and information quality. The cur-
rent implementation uses a rules-based mechanism for 
generating event routines because the underlying use 
case is of lower complexity than industrial systems. 
Herein lies a limitation of the proposed approach. Possi-
ble research directions in this context include the explo-
ration of action spaces using RL (since the current soft-
ware implementation is already predestined for it). The 
consideration of data and information quality is crucial 
for the successful combined use of simulation and pro-
cess mining and is therefore a subject for future research 
as well. Furthermore, the quantitative added value of the 
presented approach has yet to be shown in more complex 
production and logistics settings in subsequent studies.  
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