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Abstract. The world faces significant sustainability
challenges, from resource consumption to supply chain
inefficiencies. A comprehensive simulation-based ap-
proach for creating Digital Twins (DTs) is developed to ad-
dress these issues. This paper contributes to the gradual
development of DTs and presents a novel architecture
for a simulation tool. The proposed architecture enables
the creation of a holistic virtual representation of the sys-
tem by incorporating linear and circular productionmod-
els, supporting various scenarios, identifying optimiza-
tion potential, and making data-driven decisions. Using
simulation-basedDTs indicates the potential to drive sus-
tainable transformation in the beverage industry and be-
yond. As the approach progresses, it aims to provide a
blueprint for leveraging digital technologies, fostering a
more sustainable and resilient future.

Introduction

The world is confronted with unprecedented sustain-

ability hurdles, including climate change, resource de-

pletion, social inequality, and economic instability.

There is a desperate need to tackle these intricate and in-

terrelated issues. To combat these problems, the United

Nations has established the Sustainable Development

Goals (SDGs), a global framework for achieving a more

sustainable, equitable, and prosperous future for all [1].

Digital technologies, such as the Internet of Things

(IoT), Artificial Intelligence (AI), and simulation, are

increasingly recognized as powerful tools for support-

ing the achievement of the SDGs [2, 3].

In particular, SDG 9 emphasizes promoting inclu-

sive and sustainable industrialization, fostering inno-

vation, and the need for resilient and sustainable in-

frastructure. By using digital technologies to design,

optimize, and manage auch infrastructures and indus-

trial processes, organizations can make data-driven de-

cisions that minimize environmental impact and pro-

mote responsible production and consumption, as high-

lighted in SDG 12 [3, 4]. This aligns with the emerging

paradigm of Industry 5.0, which builds upon the tech-

nological advancements of Industry 4.0 while placing a

strong emphasis on the collaboration between humans

and machines to create more sustainable, resilient, and

human-centric industrial processes [5, 6].

One promising application of digital technologies

for sustainable development is the concept of virtual

representations of physical systems that are capable of

real-time data to mirror the behavior and performance

of their real-world counterparts [7, 8]. By integrat-

ing sustainability metrics and indicators into these sys-

tems, organizations can assess their operations’ envi-

ronmental impact, identify improvement opportunities,

and make informed decisions to reduce their ecological

footprint [9].

Manufacturing also encounters critical sustainabil-

ity concerns, from energy and water consumption to

waste generation and supply chain inefficiencies. To

address these, the BeverGreen project [10], a collabo-

rative effort involving the beverage industry and aca-

demic partners, aims to develop an extensive method-

ology for creating sustainability systems in this field.

Aided by simulation techniques and integrating sustain-

ability metrics, the project seeks to optimize resource

efficiency, minimize environmental impact, and pro-

mote circular economy principles.

We aim to provide valuable insights and practical

guidance for organizations seeking to harness technolo-

gies for driving sustainable development and Industry

5.0 principles through examining the intersection of

simulation, DTs and sustainability,
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1 Digital Twins and Simulation

1.1 Digital Twin Fundamentals

DTs are virtual representations of physical systems that

use historical data, real-time data, and different data

processing methods to act as a system or part of it. It

also allows for simulation, analysis, and optimization of

the physical counterpart. The concept of DTs was first

introduced by Michael Grieves in 2002 in the context

of product lifecycle management (PLM) [11]. Since

then, they have evolved to encompass various applica-

tions, from manufacturing to healthcare [12]. A key

characteristic of DTs is their ability to integrate data

from multiple sources, such as sensors, historical data,

and domain knowledge, to create an accurate and up-to-

date representation of the physical system [13]. Simula-

tion plays a crucial role in developing DTs by enabling

the prediction of system behavior under different con-

ditions and scenarios [14].

1.2 Simulation Paradigms for Digital Twins

Several simulation paradigms are employed in devel-

oping DTs, each with strengths and limitations. Dis-

crete event simulation (DES) is widely used to model

systems where state changes occur at discrete points,

such as manufacturing systems and supply chains [15].

Agent-based simulation (ABS) focuses on modeling the

behavior and interactions of individual agents within

a system, making it suitable for modeling complex

adaptive systems [16]. System dynamics (SD) models

the feedback loops and nonlinear relationships in com-

plex systems, such as ecosystems and social systems

[17]. Hybrid simulation approaches combine multiple

paradigms to leverage their strengths and address indi-

vidual paradigms’ limitations [18].

1.3 Simulation-Based Digital Twin
Development Process

Developing, commissioning, running, and maintain-

ing DTs using simulation typically involves four main

stages: conceptual modeling, implementation, verifica-

tion, and validation [19], and experimentation. Concep-

tual modeling consists of defining the scope, objectives,

and assumptions of DTs, as well as identifying the key

components and relationships within the system [20].

Implementation involves translating the model into

a computer model using appropriate simulation soft-

ware and programming languages [21]. Verification

and validation ensure that DTs accurately represents the

real-world system and produces reliable results. Exper-

imentation involves exploring different scenarios, opti-

mizing system performance, and supporting decision-

making.

The concept of Green Digital Twins (GDTs) [22]

has recently emerged as a promising approach to ad-

dress as of SDGs. These expanded DTs with a subclass

containing properties and requirements mainly charac-

terized by integrating sustainability-related specifica-

tions. A GDT based on this concept requires digital

models of resources, processes, domain knowledge, and

energy networks, such as energy sources and sinks, as

well as models of their relationships as well as a compo-

nent emission repository, by which emission factors can

be used for calculating CO2-equivalents or other met-

rics. [9]. This enables organizations to assess their op-

erations’ environmental impact, identify improvement

opportunities, and make data-driven decisions to reduce

their ecological footprint [4]. Across economic, en-

vironmental, and social dimensions, GDTs facilitates

the alignment of business objectives with sustainabil-

ity goals, promoting responsible production and con-

sumption practices by providing a holistic view of the

system’s performance.

The emergence of AI has been a significant driver

in the development and application of DTs [23]. Its

techniques, such as machine learning, enable them to

learn from data, adapt to changing conditions, and

make autonomous decisions [24]. The integration of

AI has opened up new possibilities for optimizing sys-

tem performance, predicting failures, and enabling pre-

dictive maintenance [8]. AI-powered DTs can analyze

vast amounts of data in real time, identify patterns and

anomalies, and provide actionable insights for improv-

ing operational efficiency and reducing downtime. This

synergy between AI and DTs is particularly relevant for

complex, dynamic systems, where traditional simula-

tion approaches may struggle to capture the full range

of system behaviors and interactions.

Addressing these challenges requires collaborative

efforts across disciplines to develop robust, scalable,

and interoperable platforms. The BeverGreen project

aims to address some of these challenges by develop-

ing a thorough methodology for creating GDTs in the

beverage industry, focusing on integrating sustainabil-

ity metrics and reducing environmental impact.
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2 Methodology

2.1 Overview and Objectives

Our simulation-focused architecture builds on assem-

bling a team of domain experts in production and distri-

bution, software developers, and scientific researchers

to develop comprehensive DTs that map a supply chain.

Within the BeverGreen project, we aim to digitally in-

terlock linear production chains within companies and

circular processes involving multiple actors to provide a

foundation for wide-ranging optimization potential. In

line with global sustainability goals and resilient eco-

nomics, the project focuses on critical areas such as en-

ergy management, production planning, inventory man-

agement, and transport logistics, seeking to identify

adaptable parameters that contribute to these objectives

[9].

2.2 Simulation-Focused Approach for DTs

Figure 1: Determinational Approach for Architectural
Requirements

Our simulation-focused approach (Figure 1) con-

sists of business understanding, an initial phase that

aims to identify sources for generating a comprehensive

knowledge foundation. Starting with a literature review,

an explorative interview study including all relevant

partners along the supply chain (manufacturers, inter-

mediate trade and retail, associational partners), aided

by exchange with several subject matter experts (SME)

within the team, we created a multi-layered and multi-

perspective glimpse of general systematic and procedu-

ral conditions as well as challenges along the supply

chain.

Based on insights gained in phase 1, we conducted

further analysis in a second phase, knowledge base

building and aggregation. We dissected the system’s

production, distribution, and circulation behavior and

their systemic interactions. On a process level, we

investigated necessary conditions and movement pat-

terns of products and resources within the manufactur-

ing company and also between partners of the supply

chain. Problems regarding efficiency and sustainability

were identified and specified regarding their origin in

existing processes and, if possible, analyzed and con-

cretized.

Simultaneously, methods and tools that might con-

tribute to overcoming existing challenges were viewed

to reduce identified black boxes in the relevant pro-

cesses and simulate future scenarios. Based on the dis-

section, domain-specific problems could be described

and validated by synchronizing them with the initially

detected sources of business understanding.

Phase three, Transformation, mainly addressed

characterizing specific requirements resulting from

challenges. Given the standards and conditions, orga-

nizational requirements that refer to diverse demands

along the supply chain were identified. At the same

time, necessary organizational conditions must be en-

sured for the successful development of comprehensive

DTs.

The DT being developed must meet a range of

technical requirements and functionalities, including

the ability to map relationships between machines, re-

sources, and products, the utilization of domain knowl-

edge, rules, and indicators, connectivity to various data

sources and simulations, visualization capabilities, in-

tegration of data analysis apps, and forecasting capabil-

ities.

Utilized, individual interests and aims regarding the

usage of a DT were specified, including the essential
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provision of sensible user interfaces and high data se-

curity standards. Furthermore, requirements that soft-

ware developers need as a foundation for building were

emphasized.

However, the availability of data to develop and use

DTs is heavily restricted due to varying levels of dig-

italization and interests among supply chain partners,

including limitations in transferability between differ-

ent systems. Alongside efforts to access data and form

a basis for their functionality, simulation models will

initially generate data and test various scenarios for en-

ergy utilization, routing, and product launching [3].

2.3 Model and Simulation Approach

The simulation approach has been selected to address

data black boxes, gain well-founded knowledge about

processes and their reciprocal influence, and identify

optimization potential within individual steps [18]. To

capture the system’s behavior, we have chosen a multi-

method simulation approach [25].

A meta-model will be developed to understand sys-

tem behavior and dynamics more thoroughly, as well

as global dependencies between system inputs and out-

puts. Individual process chains will also be analyzed to

create a foundation for developing discrete event sim-

ulation models [15]. Both methods need to be com-

bined to achieve the overall goal of representing an en-

tire supply chain. Given the high complexity of the sys-

tem and the need to examine emergent behavior, agent-

based methods will also be incorporated into the mod-

eling process [16].

2.4 Data Collection and Analysis Methods

Data generation and connection are crucial aspects of

the project. The team will work on establishing a ro-

bust data infrastructure that enables the integration of

data from various sources, including sensors, historical

records, and domain expertise. Advanced data analy-

sis techniques, such as machine learning and data min-

ing, can extract valuable insights from the collected data

[23]. The resulting dataset can inform and validate the

simulation models, ensuring their accuracy and reliabil-

ity in representing the real-world system [19].

Our methodology combines state-of-the-art DT

technologies, simulation paradigms, and data analysis

techniques to develop a comprehensive and sustainable

approach for optimizing supply chain operations and

processes in the beverage industry. By addressing the

challenges associated with data availability, model in-

tegration, and system complexity, the project aims to

demonstrate the potential of DTs in driving progress to-

wards the United Nations SDGs [2].

3 Use Case and Results

3.1 Project BeverGreen

BeverGreen focuses on leveraging digital technologies

to address the specific challenges faced by the bever-

age industry, such as resource efficiency, reusable bot-

tle circulation scheduling, and energy efficiency. Global

issues, including rising energy and raw material costs,

limited resources, climate protection initiatives, and

new resilience requirements for supply chains exacer-

bate these challenges. To tackle these challenges, it

aims to develop an assistance system that maps existing

data structures to domain-specific ontologies containing

relevant information, forming the basis for GDTs.

An assistance system is the starting point for link-

ing internal and external datasets, such as life cycle as-

sessment databases and CO2 equivalents (CO2e). By

integrating these datasets, the project seeks to create a

holistic view of the beverage industry’s environmental

impact and identify opportunities for optimization. The

development of GDTs, in combination with machine

learning methods, is a crucial objective of the Bever-

Green project, aiming to identify and realize energy and

resource savings in exemplary application scenarios.

3.2 Explanation of the Simulation-Based
Digital Twin Architecture

Two primary areas are focused on: closed application

circles in production and circular value creation net-

works. In brewing processes, DTs are being developed

to optimize resource consumption, minimize waste, and

improve overall efficiency. Creating simulation-based

representations of brewing processes enables stake-

holders to simulate various scenarios, test optimization

strategies, and make data-driven decisions to reduce the

environmental footprint of their products.

Within logistics, the project addresses challenges

associated with reusable bottle circulation scheduling.

DTs of this circuit aims to optimize the flow of reusable

bottles, minimize transportation costs, and reduce the

overall environmental impact of distribution. Co-opting

real-time data and advanced analytics seeks to create a
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more efficient and sustainable logistics network for the

beverage industry.

BeverGreen’s use cases demonstrate the potential of

DTs and machine learning in driving the sustainable

Transformation of the beverage industry. The project

aims to serve as a beacon for other industries seeking

to optimize their operations and reduce their environ-

mental impact by addressing specific challenges related

to resource efficiency, energy consumption, and circu-

lar value creation. The insights gained from this project

will contribute to developing best practices and guide-

lines for implementing digital technologies in pursuit of

sustainability goals.

3.3 Architecture

The proposed architecture for simulation-based rep-

resentations is an integral part of this development and

is illustrated in Figure 2. It aims to provide a compre-

hensive framework for integrating various data sources,

enabling semantic linking, and facilitating holistic DTs.

3.3.1 Data Sources and Mapping

The first step in the architecture is to identify and con-

nect all relevant data sources across the supply chain

that provide the necessary data for the desired func-

tionalities. As shown in Figure 2, this includes data

from Enterprise Resource Planning (ERP), Manufac-

turing Execution Systems (MES), Supervisory Con-

trol and Data Acquisition (SCADA) systems, and other

databases, which are crucial for depicting production

and distribution processes at all relevant operational

system levels within and across partners.

For BeverGreen, specific data sources may include

brewery production data, inventory levels, energy con-

sumption metrics, and transportation logistics informa-

tion. Additionally, environmental data sources, such as

emission data, weather data, traffic data, economic and

political data, and state or institutional regulations, must

be incorporated to increase sustainability along the en-

tire supply chain. In the context of the beverage indus-

try, this may involve integrating data on carbon foot-

prints, water usage, and waste generation throughout

the production and distribution processes.

To integrate these diverse datasets, a Federated

Database Systems (FDBSs) will be established, which

connects to the various data sources through Applica-

tion Programming Interfacess (APIs) and serves as the

essential basis for the simulation. The FDBS leverages

technologies such as data lakes, data warehouses, and

ETL (Extract, Transform, Load) processes to enable ro-

bust data integration from heterogeneous sources in a

predefined ontology. A data pipeline will be set up to

prepare data for use in simulation models and feed data

analysis workflows. These analytical processes, such as

machine learning algorithms for optimization and data

mining techniques for identifying patterns and anoma-

lies, can be embedded at this stage to enhance the data

processing capabilities.

In the context of collaborative data warehousing

initiatives. To facilitate simulation objectives and de-

velop company-wide DTs, the industry strictly uses

anonymized or aggregated data to protect sensitive in-

formation.

However, guaranteeing data security across DTs

functions and layers utilized by various supply chain

partners is a formidable challenge that must be ad-

dressed. Numerous studies have investigated security

risks and proposed several approaches to tackle these

issues, both from a technological standpoint; security

protocols are paramount in terms of security manage-

ment and procedures [26]. Our project team will evalu-

ate different measures to identify and implement effec-

tive security solutions while establishing a robust user

and access rights management system.

3.3.2 Simulation Models and Data Routes

The prepared simulation data is used to parameterize

linear and circular production models via an API, en-

abling the initiation of multiple simulation runs and

experiments, as depicted in Figure 2. In BeverGreen,

linear production models may represent brewing pro-

cesses, while circular production models may encom-

pass reusable bottle circulation and recycling processes.

To validate and verify the initial results and, more

importantly, the underlying simulation model, valida-

tion techniques such as historical data validation, face

validity, and sensitivity analysis are applied. These

techniques involve comparing simulation results with

existing real-life data in the FDBS, ensuring that the

model accurately depicts the real-world system. For

example, the simulated energy consumption and re-

source utilization in the brewing process can be com-

pared against historical data to validate the model’s ac-

curacy.

Furthermore, the resilient simulation results that

emerge later must be imported back into the FDBS

to continuously feed the knowledge base with
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Figure 2: Architecture of a Simulation-based DT

new findings. The resulting feedback loop and

simulation-assisted exploration of What-If analysis al-

lows decision-makers to anticipate the impact of poten-

tial changes or disruptions on the supply chain, which

guides iterative improvement of simulation models and

hence DTs overall.

Another API is set up to incorporate the results of

various simulation runs and experiments into the DTs

functional components, e.g. circulating inventory, re-

source consumption, and emission data. Specifically,

simulation results provide synthetic data to understand

assumed relationships between machines, resources,

and products, such as indicators and rules for circu-

lating inventory, consumption, or emissions. For in-

stance, the simulation may reveal correlations between

production time, energy consumption, and peak elec-

tricity usage, which can be used to optimize the shedul-

ing of brewing processes for sustainability. All results

are merged with data retrieved by the DTs using a multi-

connective data mapping assistant, ensuring a compre-

hensive and up-to-date representation of the system.

3.3.3 Decision Support and User Interface

Enriched with synthetic data, DTs will provide a rich

backend for decision support systems of various indi-

vidual stages along supply chains. In order to offer op-

tions designed to detect patterns, predict future trends,

and provide actionable insights to support data-driven

decision-making. The decision support is realized via a

User Interface (UI), as illustrated in Figure 2, and en-

ables stakeholders to access decision-specific elements.

The emerging decision support capabilities of DTs

are propelled by enabling synoptic comparison of re-

sults after processing the vast amounts of data gener-

ated by simulation models and integrated data sources.

It also has to be able to visualize the wealth of infor-

mation generated within a DT. Adapted to the use cases

and needs of different applications or roles within the

beverage industry, the UI serves as a hub for user ac-

cess to DT functional components.
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4 Discussion and Outlook
The proposed architecture offers a robust framework for

integrating diverse data sources, ontologies, and sup-

porting the creation of a comprehensive DT. By incor-

porating simulation models, data mapping, and user in-

terfaces, this architecture supports the gradual develop-

ment of DTs, promoting data-driven decision-making

and process optimization in the BeverGreen project and

the broader beverage industry.

The modular nature of the architecture, with its

microservices-based data integration and flexible simu-

lation modeling approach, allows for adaptation to dif-

ferent supply chain structures and sustainability chal-

lenges beyond the beverage sector. Adapting and

enhancing the architecture to industry-specific data

sources, simulation models, and key performance indi-

cators (KPIs) provides a tailored solution that supports

sustainable development across sectors.

The simulation component is pivotal in developing

and continuously improving DTs by enabling organi-

zations to explore various scenarios, test optimization

strategies, and make informed decisions to enhance sus-

tainability performance. The seamless integration of

simulation models allows for the continuous refinement

of the virtual representation based on real-world feed-

back, making it an increasingly powerful tool for driv-

ing sustainable innovation and decision-making as it

evolves and incorporates new data sources and simu-

lation results.

Based on the current state of understanding, the fol-

lowing procedure includes modeling production chains

and logistics within the beverage industry at the meta

and process level as a basis for running simulations.

In this particular process, we address the connection

between models to describe the supply chain compre-

hensively and to tackle overall aims in terms of emis-

sions, circulating inventory, and resource consumption

further.

However, the proposed architecture faces obstacles

in ensuring data security when integrating sources from

multiple partners along the supply chain. This requires

careful consideration of specialized solutions and ro-

bust security management, where various techniques

have been suggested to solve existing challenges with

technological or security management measures and

procedures to overcome these hurdles. Our project team

will consider the framework’s scalability and generaliz-

ability to other industries and supply chain structures. It

may require further investigation and validation to en-

sure its effectiveness in supporting adequate data secu-

rity.

As the BeverGreen project progresses and demon-

strates the value of simulation-based GDTs in driving

sustainable development, it will serve as a blueprint for

other industries seeking to harness the power of digital

technologies to optimize their operations and reduce en-

vironmental impact. By sharing best practices, lessons

learned, and the technical architecture developed within

the project, we aim to accelerate the adoption of DTs in-

cluding GDTs across various sectors, moving closer to

Industry 5.0 and sustainable production.
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