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Abstract. Military planning operations require navi-
gating constantly changing environments. To support
decision-makers, innovative concepts are essential for
automatically generating effective solutions tailored to
specific logistics operations. These tools aim to acceler-
ate planning procedures, minimize risks, and decrease
operating costs. This paper introduces a simulation-
based optimization framework designed to enhance the
mobility of military vehicles through terrain-aware nav-
igation. The paper specifically delves into a key com-
ponent of the framework: terrain identification. This
challenge is addressed using unsupervised methods, en-
suring applicability even in unfamiliar operational set-
tings. The experimental findings demonstrate promising
results in identifying terrain characteristics, particularly
in discerning surface waviness, slant, and curvature.

Introduction
The mobility of supplies, equipment, and personnel

is crucial to the success of land-based military mis-

sions. Unlike civilian logistics, which often priori-

tize the shortest and quickest routes, military operations

must consider factors such as environment uncertainty

[1], route vulnerability [2], and terrain passability [3]

when determining the most suitable logistics routes.

Furthermore, military operations often extend

across geographically diverse regions, the condition of

the terrain having a direct impact on their effectiveness

[3]. Therefore, planners must carefully assess terrain

characteristics such as landform features, soil condi-

tions, and slope degree when preparing military logis-

tics plans. The terrain encountered by military land ve-

hicles often falls outside typical mapped areas, leaving

planners with little information regarding its topology.

In such scenarios, battlefield commanders lean on ter-

rain analysts to interpret geographic features of an area

and assess their impact on the military mission [4].

Over time, the process of terrain analysis evolved

from a predominantly manual endeavor to one increas-

ingly reliant on computer-based systems [5]. One facet

of terrain analysis that can be solved through computa-

tional means is terrain identification. This field of re-

search involves estimating ground characteristics (e.g.,

cohesion, curvature, inclination) or categorizing terrain

types (e.g., gravel, asphalt, sand) by gathering diverse

sensor data under various road conditions and analyz-

ing vehicle responses to the terrain.

Numerous researchers have made significant contri-

butions to terrain identification methodologies. Among

these, supervised learning techniques such as Support

Vector Machine [6, 7], Decision Tree [8], Neural Net-

work [9, 10], or Gaussian Process Regression [11]

have emerged as popular choices. Although these ap-

proaches have proven effective, they require prior hu-

man intervention or additional hardware, such as laser

line striping sensors, for data labeling. Conversely, un-

supervised approaches do not necessitate labeled data

and can be directly applied in scenarios where the ex-

ternal environment is unknown.

In addition to the configuration of the learning algo-

rithm, the accuracy of the terrain identification strategy

depends on the data it receives. Various sensors can

be mounted to the vehicle to gather this data. Cameras

[12, 13], lidars [14, 15], and accelerometers [6, 16, 17]

stand out as prominent choices in recent research. Each

sensor type comes with its limitations [18]. For in-

stance, vision-based sensors like cameras and lidars are

sensitive to weather conditions that reduce visibility,

such as fog or rain, whereas reaction-based sensors like

accelerometers are sensitive to speed and load varia-

tions. Despite this disadvantage, reaction-based tech-
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niques demonstrate great cost-effectiveness and robust-

ness across diverse terrain types [19].

This study focuses primarily on solving the ter-

rain identification problem, aiming to differentiate dis-

tinct terrain characteristics such as roughness, wavi-

ness, slant, and curvature. The approach involves con-

ducting multiple test drives within military test sites

to collect reaction-based data, including acceleration,

roll, pitch, and angular rate, captured by an accelerom-

eter and a gyroscope. Initially, the signal data under-

goes windowing, followed by segmenting each route

into predetermined lengths. Subsequently, the unsuper-

vised learning algorithm Multivariate K-Means is uti-

lized to differentiate between different terrain character-

istics. We employ the Dynamic Time Warping (DTW)

algorithm to calculate the pairwise proximity between

the road segments.

Moreover, this research introduces a simulation-

driven logistics framework that combines terrain iden-

tification, scheduling, and vehicle routing processes to

assist path planners in conceiving terrain-aware logis-

tics strategies. The plans generated by this frame-

work are designed to optimize the utilization of avail-

able asset capacities by considering surface character-

istics when determining efficient transportation routes.

Within the broader logistics landscape, this approach

presents an opportunity to improve operational effi-

ciency and achieve substantial cost savings. In addition

to immediate reductions in fuel and personnel expenses,

it can also play a role in lowering long-term vehicle

maintenance costs. This is achieved by implement-

ing intelligent routing strategies that minimize vehicle

wear and tear, ultimately extending their lifespan and

decreasing the frequency of repairs and replacements.

The structure of the paper is as follows. Section 1

outlines the logistics framework. The method proposed

for terrain identification is detailed in Section 2. Sec-

tion 3 discusses the findings of the terrain identification

process. Finally, Section 4 provides a summary of our

conclusions and outlines future work.

1 CONCEPTUAL APPROACH OF A
SIMULATION-BASED
TERRAIN-AWARE LOGISTICS
FRAMEWORK

Developing military logistics strategies presents a sig-

nificant challenge in optimizing asset scheduling and

route selection for efficiently transporting personnel,

equipment, and supplies to designated destinations.

This challenge is heightened by the absence of basic

infrastructure at certain locations and the diverse ter-

rain conditions encountered during transit. Addition-

ally, different vehicles are tailored for navigating spe-

cific types of terrain. Some are designed for rough,

steep terrain with obstacles, while others perform bet-

ter on smooth, paved roads. To ensure effective and

efficient transportation operations, it is essential to con-

sider the mobility capabilities of vehicles across vari-

ous surfaces, alongside critical logistics factors such as

route length, transport duration, and delivery time re-

quirements.

To overcome these challenges, we introduce the

simulation-based logistics framework depicted in Fig-

ure 1. The primary objective of this framework is to as-

sist planners in developing efficient military transporta-

tion systems by focusing on sustainable resource man-

agement and enhancing the mobility of military vehi-

cles in favorable terrain conditions.

Figure 1: Conceptual model of the proposed
simulation-driven terrain-aware logistics
framework.

The framework begins by prioritizing the identifica-

tion of terrain characteristics along the routes. These

details, along with information on road networks, vehi-
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cle availability, and load requirements for transportation

between origin and destination points, serve as inputs.

Subsequently, the framework proceeds to optimize

fleet vehicle utilization. The scheduling component de-

termines which load should be transported by each ve-

hicle and in what sequence, aiming to minimize costs

while meeting constraints such as vehicle capacities.

Following scheduling, the routing process utilizes

the scheduled assets to establish logistics routes. This

process extends beyond selecting the shortest and

fastest paths by considering terrain conditions. As cer-

tain terrains disproportionately affect vehicle perfor-

mance, wear, and tear, selected routes must correspond

to the mobility characteristics of the transporter.

During the simulation phase, logistics plans are ex-

ecuted, and the behavior of simulation agents is moni-

tored. Each transportation task is evaluated using a cost

function designed to minimize both transportation dura-

tion and expenses, taking into account travel feasibility

on appropriate surfaces.

Acknowledging the critical role that terrain charac-

teristics play in terrain-aware logistics, the topic of ter-

rain identification will be explored throughout the re-

mainder of this paper.

2 TERRAIN IDENTIFICATION

This section explores terrain identification, a key com-

ponent of the logistics framework detailed in Section 1.

This process is essential for enabling the computation

of terrain-aware logistics routes.

2.1 Problem Description

We address the challenge of terrain identification uti-

lizing reaction-based sensor measurements. Our pri-

mary objective is to differentiate specific terrain charac-

teristics such as roughness (Figure 2a), waviness (Fig-

ure 2b), slant (Figure 2c), and curvature (Figure 2d),

even in situations where prior knowledge about the ter-

rain is limited. This is achieved through analyzing

unique signal patterns captured by standard sensors like

accelerometers and gyroscopes, which record the dy-

namic interaction between the vehicle and the terrain.

To accomplish this task, we introduce the technique de-

tailed in Section 2.2.

(a) Roughness
(lateral cross-section)

(b) Waviness
(lateral cross-section)

(c) Slant
(frontal cross-section)

(d) Curvature
(driver’s perspective)

Figure 2: Terrain characteristics under investigation.

2.2 Solution Approach

We propose the methodology illustrated in Figure 3 for

accomplishing terrain identification. This approach re-

lies on data acquired from reaction-based sensors dur-

ing vehicle operation on different road surfaces. In the

preprocessing phase, the input data is subjected to win-

dowing and segmentation to create frames used for fea-

ture generation. Subsequently, the unsupervised learn-

ing technique Multivariate K-Means is applied to iden-

tify different terrain characteristics.

Figure 3: Proposed terrain identification methodology.
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In the upcoming paragraphs, each component of the

terrain identification approach will be elaborated.

Data Acquisition Over the course of 24 test runs

at a military test site, data was gathered from multiple

ground surfaces that exhibit different degrees of rough-

ness, waviness, slant, and curvature. For this purpose, a

military vehicle covered about 500 km, equipped with

an accelerometer, a tri-axial gyroscope, and a global po-

sitioning system (GPS). Each sensor recorded data at a

sampling rate of 500 Hz.

To overcome the speed dependency limitation of

reaction-based terrain identification, the vehicle was

driven at different speeds ranging from 5 to 45 km/h.

Data Preprocessing The preprocessing phase in-

volves two key steps: windowing and segmentation.

Windowing is a technique essential for transforming

the sequential data, such as the dataset under consider-

ation, into a format that suits traditional machine learn-

ing algorithms [20]. Additionally, it helps reduce com-

putational complexity. This process involves dividing

the sensor data into non-overlapping frames, with each

frame consisting of 500 samples, corresponding to one

second of data given a sampling frequency of 500 Hz.

Clustering entire routes poses challenges in detect-

ing local similarities among them. Conversely, clus-

tering each observation separately fails to generate co-

hesive patterns and instead scatters the clusters across

multiple terrain categories. To address this dilemma, we

choose to partition each test drive into segments mea-

suring 40 m, approximately five times the length of the

vehicle. Each of these partitions is treated as an indi-

vidual observation.

Feature Generation The sensor data in time do-

main, including tri-axal acceleration, tri-axal rotation

rate, roll, and pitch is converted into the frequency do-

main using the Fast Fourier Transform (FFT) algorithm.

Features are extracted by considering observations from

both the original time domain representation and its fre-

quency domain transformation within previously gen-

erated windows. Each window is aggregated to an in-

dividual output value by computing statistical measures

such as mean, standard deviation, minimum, maximum,

and interquartile range. In total, this process yields 80

features.

Clustering We approach the task of terrain identifi-

cation by examining similar patterns within segments

of routes traversed by vehicles. Since each segment

contains multiple observations, the problem inherently

becomes multivariate. To handle this complexity, we

utilize Multivariate K-Means clustering. While deep

learning clustering techniques could also be applied,

they tend to be complex, challenging to interpret and

can generate high computational costs. However, the

K-Means method also has its limitations, particularly its

sensitivity to the choice of the cluster number k. To ad-

dress this issue, we employ the Silhouette Coefficient,

introduced in [21], to determine an optimal number of

9 clusters.

In the clustering process, we use the DTW proxim-

ity measure, a technique proposed in [22]. This method

offers advantages over the conventional Euclidean dis-

tance by effectively recognizing similarities within se-

quences, even in cases where they differ in length or

experience slight temporal shifts.

For enhanced visualization and evaluation of the

clustering results, we adopt the Multivariate T-

distributed Stochastic Neighbor Embedding (m-TSNE)

technique introduced by [23]. This approach en-

ables the projection of multivariate high-dimensional

data onto a lower-dimensional space while maintain-

ing the similarity relationships between the data se-

quences. Consequently, sequences that are similar in

high-dimensional space also remain proximate in the

lower-dimensional space.

3 EXPERIMENTAL RESULTS

The solution described above has been executed and

evaluated in Python 3.11.5 on a typical PC operating

on Windows 11, equipped with an 11th generation Intel

Core i7-11370H CPU running at 3.30 GHz and 16 GB

of RAM. Training the model on a preprocessed dataset

of 200MB size requires approximately 15 minutes. The

complexity of training arises from the significant num-

ber of pairwise similarities that need to be computed,

specifically
(N

2

)
, where N represents the count of route

segments.

The 24 trips are partitioned into approximately

12000 segments, each one assigned to one of 9 clus-

ters via the Multivariate K-Means algorithm, utilizing

80 features. To enhance visualization of the high-

dimensional space, the data is reduced to two dimen-

sions using the m-TSNE method, as shown in Figure 4.
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Each point in the plot corresponds to a route segment,

revealing discernible separation patterns among groups.

While certain groups, particularly those at the periph-

ery, exhibit distinct isolation from others, the observa-

tions in the central regions lack clear boundaries. The

clustering method captures the underlying pattern, with

only a few instances dispersed across multiple groups

in the 2D space.

Figure 4: Representation of the two-dimensional m-TSNE
components depicting route segments clustered
based on the Multivariate K-Means method.

Figures 5a-5d illustrate the key features essential for

cluster formation. Each displayed feature undergoes

aggregation through windowing using the mean func-

tion, as detailed in Section 2.2, derived from frequency

domain transformations. Analyzing these plots enables

the characterization of clusters based on the distinct ter-

rain traits outlined in Figure 2. High signal magnitudes

emphasize the presence of particular terrain character-

istics, while lower magnitudes indicate their absence.

The accelerometer supports the measurement of the

vehicle’s vertical displacement relative to the ground (z-

axis acceleration), facilitating the evaluation of terrain

roughness. Notably, cluster C5 stands out for exhibiting

rough terrain, as evident in Figure 5a. Waviness, on the

other hand, involves larger repetitive bumps compared

to roughness, resulting in a rocking motion in the vehi-

cle rather than just vertical acceleration. These move-

ments are detected through pitch measurements of the

gyroscope. As depicted in Figure 5b, clusters C6 and

C8 highlight wavy terrain characteristics. Surface slant,

indicative of tilts to the right or left, is discernible via

the roll signal. Slanted terrain is observable in clusters

C2 and C8 from Figure 5c. Furthermore, the gyroscope

can capture the rotational motion of the vehicle, reflect-

ing road curvature, as evident in clusters C0 and C4

from Figure 5d. The remaining clusters lack distinctive

terrain characteristics based on the examined features.

This suggests that the road segments within these clus-

ters have likely smooth, straight surfaces. An overview

of the characteristics exhibited by each cluster can be

found in Table 1.

(a) Z-axis acceleration (b) Pitch

(c) Roll (d) Z-axis angular rotation

Figure 5: Selection of features employed in the clustering
procedure, presented individually for each cluster.
These features were derived from raw signals
transformed into the frequency domain and
aggregated using the mean function during the
windowing process.

Since the test drives were conducted on a special-

ized test course, certain segments of the underlying sur-

faces have known labels. For instance, cluster C2 repre-

sents the inclined test track featuring an incline ranging

from 20% to 30%. Cluster C5 encapsulates the wash-

board test track, while the sine-wave road is identifiable
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Roughness Waviness Slant Curvature
C0 - - - �
C1 - - - -

C2 - - � -

C3 - - - -

C4 - - - �
C5 � - - -

C6 - � - -

C7 - - - -

C8 - � � -

Table 1: Summary of the terrain characteristics observed
within the clusters.

within cluster C6. Cluster C7 encompasses cobblestone

and gravel. Lastly, cluster C8 delineates the distortion

road, characterized by alternating waves on each side.

Table 2 outlines the comparison between the cluster-

ing results and the known true labels. Upon examining

the model’s performance across the clusters, it becomes

evident that the model shows higher performance for

certain road types. Specifically, the sloped (C2) and

the distorted (C8) roads are recognized with high preci-

sion, recall, and F1-score. However, the model’s perfor-

mance is less satisfactory in identifying the wash-board

(C5) and the sine-waved (C6) tracks.

Cluster Precision Recall F1-score
C2 0.99 0.95 0.97

C5 0.92 0.35 0.51

C6 0.86 0.49 0.62

C7 0.93 0.82 0.87

C8 0.93 0.93 0.93

Table 2: Summary of the model performance.

4 CONCLUSION AND OUTLOOK
In military operations, terrain-aware logistics are cru-

cial, especially when navigating through challenging

landscapes with sparse infrastructure to transport sup-

plies, equipment, and personnel. In such contexts, lo-

gistics planning must encompass not only factors like

travel distance, duration, and delivery schedules but

also take into consideration the unique characteristics

of the terrain traversed.

In response to this necessity, this research introduces

a simulation-driven terrain-aware framework designed

to support decision-makers in improving the mobility

of military vehicles by enabling them to navigate more

efficiently through favorable terrain conditions. The

primary focus of this paper is the terrain identification

process, which utilizes unsupervised methods to distin-

guish between different terrain characteristics even in

the absence of prior knowledge about the surface con-

ditions. The experimental findings demonstrate promis-

ing results in discerning roughness, waviness, slant, and

curvature through reaction-based signals. Each terrain

characteristic is represented by a dominant signal, for

instance high magnitudes of the z-axis acceleration sig-

nal indicate rough terrains. Additionally, terrains with

multiple characteristics can be identified by considering

multiple signals; for example, higher magnitudes in the

pitch and roll signals suggest a wavy and slanted road.

Despite its effectiveness, this approach requires

careful consideration in certain areas. As noted in pre-

vious research [18], reaction-based terrain identification

is sensitive to the speed and load of the vehicle, caus-

ing terrain signatures to vary under different operating

conditions. For accurate identification, the algorithm

needs to be trained with a diverse dataset that includes a

wide range of speeds and loads. Additionally, unsuper-

vised learning, though valuable when no prior knowl-

edge of terrain conditions is available, requires human

interpretation of the results. Defining thresholds for

specific signals indicating particular road features is es-

sential for precise categorization. Furthermore, the cur-

rent approach focuses on identifying terrain features but

does not quantify their intensity. Future work should in-

corporate a scoring system to evaluate terrain surfaces

based on their characteristics. Identifying specific sur-

face types, such as concrete, grass, or soil, would also

significantly enhance the optimization of logistics route

planning.

While this paper emphasizes terrain identification,

it is imperative to implement the subsequent steps of

the framework to fully realize its potential in terrain-

aware logistics. This includes integrating processes for

fleet scheduling, route planning based on terrain fea-

tures, and simulation-based evaluation to refine and op-

timize military logistics operations.
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