
Abstract. NSA-DEVS (Non-Standard Analysis Discrete
Event System Specification) is an advancement of the
DEVS formalism for modeling and simulating discrete-
event and hybrid systems. DEVS supports modular-
hierarchical modeling and clearly separates model from
simulator. The primary objective of NSA-DEVS is to sim-
plify the modeling of components with Mealy behavior
while maintaining a simple simulator structure and the
exact set-theoretic definitions of DEVS. With the imple-
mentation of a modeling and simulation environment, a
comprehensive library of generic components, and real-
world applications, the use of NSA-DEVS has been eval-
uated. However, the implementation of complex appli-
cations revealed that set-theoretic modeling should be
complemented by visual techniques to facilitate system
design and documentation. This paper explores how a
visual representation equivalent to NSA-DEVS can be de-
veloped based on the known DEVS diagram and Harel’s
Statecharts.

Introduction

The set-theoretic DEVS formalism [1, 2] and its pop-

ular version PDEVS [3] are widely used for studying

discrete event systems. However, Preyser et al. [4]

have shown that it is difficult to define some basic

reusable components, especially when they have Mealy

behaviour. They introduced a revised version called

RPDEVS [5]. However, RPDEVS struggles with han-

dling chains of concurrent events [6].

Junglas argues in [7] that mathematical problems

often are due to oversimplification in modeling. The

macroscopic abstraction of phenomena by events re-

sults in simultaneous events, while in the underlying

microscopic dynamics the corresponding processes are

separated by small time delays. NSA-DEVS (Non-
Standard Analysis DEVS) [8, 9] uses hyperreal numbers

to represent infinitesimal time delays, thereby solving

the problem of simultaneous event cascades. In con-

trast to PDEVS, Mealy behavior can be modeled with-

out transitory states, which simplifies the specification

of generally reusable model components.

A modeling and simulation (M&S) environment

based on NSA-DEVS has been developed using MAT-

LAB and Simulink’s graphical editor [10, 11]. A few

things became clear when implementing a real applica-

tion [12], which consists of several layers and hierar-

chies with a large number of model components. First,

designing and testing atomic model components speci-

fied in purely textual form using set theory requires a lot

of time when the specification involves a large number

of events and states. Second, using the visual support

of the Simulink editor has proven to be extremely ben-

eficial for modeling networked systems and hierarchi-

cal structures. This insight is not new, and several ap-

proaches to represent DEVS models graphically have

already been developed. Based on preliminary work,

Song and Kim designed the Revised DEVS Diagram
[13] for Classic DEVS. In the authors’ opinion, the Re-

vised DEVS Diagram provides the best compliant rep-

resentation of atomic DEVS models, even taking into

account newer UML-based approaches, such as in [14].

The paper explores how the Revised DEVS Diagram

can be adapted to depict NSA-DEVS models. It starts

by giving a brief overview of the NSA-DEVS formal-

ism and the Revised DEVS Diagram, and then exam-

ines the key differences between modeling with Classic

DEVS and NSA-DEVS. Next, it discusses the basics

of the modified diagram proposed here. Finally, a case

study is used to demonstrate how NSA-DEVS models

can be specified using the customized diagram.

ASIM 2024 Tagungsband Langbeiträge, 27. Symposium Simulationstechnik, Univ. d. Bundeswehr München, 4.- 6. 9. 2024

Visual NSA-DEVS Modeling sing an
Diagram

Thorsten Pawletta1*, David Jammer1, Peter Junglas2, Sven Pawletta1
1Research Group Computational Engineering and Automation, University of Applied Sciences Wismar, Philipp-
Müller-Straße 14, 23966 Wismar, Germany;
*thorsten.pawletta@hs-wismar.de
2PHWT-Institut, PHWT Vechta/Diepholz, Am Campus 2, 49356 Diepholz, Germany;

ARGESIM Report 47 (ISBN 978-3-903347-65-6), p 219-226, DOI: 10.11128/arep.47.a4727 219

1 Background

This section gives a short review of the NSA-DEVS

formalism and the Revised DEVS Diagram for Classic

DEVS.

1.1 The NSA-DEVS Formalism

Analogous to the DEVS formalism, NSA-DEVS de-

fines a set-theoretic model specification and an opera-

tional semantics, called abstract simulator, to execute

the specification. As with all DEVS formalisms, a

distinction is made in the model specification between

atomic and coupled models. An abstract simulator is

defined for each model type, which is referred to as the

simulator for atomic models and the coordinator for

coupled models. During the execution phase, an ab-

stract simulator is assigned to each model. A root coor-
dinator manages the hierarchy of abstract simulators.

An atomic model describes the dynamic behavior of

an arbitrarily complex system and is defined by a 7-

tuple < X ,S,Y,τ, ta,δ ,λ > with:

X set of input ports and values,
S set of states,
Y set of output ports and values,

τ ∈ ∗
R
>0
fin input delay time,

ta : S → ∗
R
>0
fin ∪{ω} time advance function,

δ : Q×X+ → S state transition function,
λ : Q×X+ → Y+ output function.

The input and output sets X , Y contain pairs of ports
and values, where ports are given by names.

X = {(p,v)|p ∈ Pin,v ∈ Xp}
Y = {(p,v)|p ∈ Pout ,v ∈ Yp}

The sets X+ , Y+ consist of sets of pairs from X , Y to

describe the simultaneous appearance of input or output

values at different ports. Simultaneous input events at

the same port are not allowed. The definition of the

transition function δ and the output function λ contain

the set Q = {(s,e)|s ∈ S, 0 < e ≤ ta(s)} that combines

a state and the elapsed time e since the last transition.

According to the model specification, the simula-
tor must process external, internal and confluent events.

All three event types lead to a call of λ followed by

a change to a new state according to δ . The time ad-

vance function ta may be infinitesimal or infinite (using

ω := 1/ε , with ε as infinitesimal value), but it is always

> 0, thereby excluding proper transitory states. The de-

lay time τ between the arrival of a set of inputs and the

call of λ and δ is generally an infinitesimal, often given

by a default value τde f = ε . Generally, all hyperreals

used in models and the simulator have the form a+ bε
for real a,b. A more detailed description of the opera-

tional semantics of the simulator can be found in [10]

and the full algorithm in [8].

A coupled NSA-DEVS model is defined as in

PDEVS with ports [2]. It consists of input and output

ports and a set of atomic or coupled models, which are

connected among themselves and to the external ports.

Outputs are transported as usual and a coupled model

has no additional input delays. Since the operational

semantics of the coordinator and the root coordinator
are not essential for understanding a DEVS diagram for

atomic models, they are not discussed in detail and ref-

erence is made to [8].

1.2 The Revised Diagram for Classic DEVS

To represent the dynamics of atomic models visually,

Song and Kim formulated the Revised DEVS Diagram

[13]. It is based on a series of preliminary works, whose

origin probably goes back to Prähofer [15]. Based on

the idea of Harel’s Statecharts [16], Prähofer introduces

a DEVS diagram which already contains descriptive el-

ements adapted for atomic models.

The Revised DEVS Diagram in [13] is specifically

designed for Classic DEVS with Ports [2]. According to

the DEVS formalism, two types of diagrams are distin-

guished, one for atomic and another for coupled mod-

els. The latter is similar to the UML Composition Struc-
ture Diagram, which is extended by a field for specify-

ing the select function specific to Classic DEVS.

The diagram for atomic models is based on a struc-

turing of events and states. Events are grouped by cate-

gories into classes. Thus, events have a type and a value

and are called a message. The set of Ports defines the

interface of an atomic model. A port can only process

messages of the same type, and only one message at a

time, and is defined by portName:messageType. While

an input port can only be connected to one source, an

output port can be connected to several targets. The

following syntax applies to input and output messages:

inportName?message and outportName!message.

States are structured in phases, as in Harel’s State-

charts [16]. A phase is a representative value of a set

of states which produce the same output event and/or

have the same time advance (remaining lifetime) at the

ASIM 2024 Tagungsband Langbeiträge, 27. Symposium Simulationstechnik, Univ. d. Bundeswehr München, 4.- 6. 9. 2024

220

states. A phase is represented by a rounded box with

the value of the phase variable and its remaining life-

time @T until the next internal event. In addition to the

phase variable, there is the set of ordinary state vari-

ables Sv, so that the current system state s ∈ S results

from the values of the pairs (phase,sv) with sv ∈ Sv.

Phase transitions are triggered by external or inter-

nal events. Transitions caused by external events are

represented by a solid line, transitions caused by inter-

nal events by a dashed line. In Classic DEVS, there are

no simultaneous internal and external (confluent) events

in atomic models. These are resolved at the level of

the coupled models using a select function. Further-

more, there is no Mealy behavior, i.e. outputs can only

be generated by internal events. Both types of events

lead to state changes, i.e. to a phase transition and/or to

changes in the ordinary state variables, and to a recal-

culation of the lifetime @T of the current phase. This

DEVS-based dynamics can be described with a triple

(event, guard, action) at the phase transitions using the

following notation:

inportName?message@[guard]/{actions}
out portName!message@[guard]/{actions}

The first notation defines state changes triggered by

external events and the second one outputs and state

changes caused by internal events. The @[guard] de-

fines a logical expression that depends on the message
or the ordinary state variables. A phase transition, the

execution of actions, and the sending of output events

will only become active if the guard is true.

Figure 1 shows the specification of the dynamics of

a single server as DEVS diagram. The server receives

entities E of type �E to be served via the port in : �E and

sends processed ones via the port out : �E . Furthermore,

it sends the current status via the port working : {0,1},

where 0 stands for the IDLE phase and 1 for BUSY.

Additionally, the initial phase is denoted with a bold

box. The types and initial values of the phase variable

and the ordinary state variables are defined in the lower

box. The transition annotation in?E/{ job = E,σ = 0}
specifies the transition from IDLE to BUSY due to a

message E on the port in without defining a guard. The

two actions describe the allocation of the server with the

entity (job = E) and the scheduling of an immediately

internal event (σ = 0) in order to send the server’s new

status as a message on the port working (no Mealy be-

havior!). The behavior resulting from the internal event

am_server

IDLE
@

BUSY
@

out!job,
working!0
@[status=1]/
{status=0,job= }

working!1
@[status=0]/
{status=1, =2.5}

in?E/{ = -e}

in?E/
{job=E, =0}

out:in:

working:{0,1}

Figure 1: DEVS diagramm of a single server with
discrete-event output of the server status.

specifies the dashed phase transition with the annotation

working!1@[status = 0]/{status = 1,σ = 2.5}. How-

ever, the guard defines the condition for activating ex-

actly this transition and the action σ = 2.5 sets the life-

time of the phase (fixed service time). Entities arriving

in BUSY (in?E/{σ = σ − e}) are discarded, but the

remaining time advance is recalculated using the inter-

nal variable e for the elapsed time since the last state

change.

The transition from BUSY to IDLE with the an-

notation out! job,working!0@[status = 1]/{status =
0, job = /0} describes the output of the processed entity

(job) on the port out when the service time has expired,

and the output of the new server status at port working.

Moreover, the ordinary state variables status and job are

updated. The example shows how the guards control

which of the two transitions takes place when an inter-

nal event occurs.

In addition to the techniques described, the Revised

DEVS Diagram supports other mechanisms such as hi-

erarchical phase compositions and parallel phases [13].

2 A Diagram for NSA-DEVS

This section begins with a short discussion of the key

differences in modeling with Classic DEVS and NSA-

DEVS. Subsequently, we introduce some adapted and

new modeling elements for a DEVS diagram to repre-

sent atomic NSA-DEVS models.

ASIM 2024 Tagungsband Langbeiträge, 27. Symposium Simulationstechnik, Univ. d. Bundeswehr München, 4.- 6. 9. 2024

221

2.1 Key Differences in Modeling with Classic
DEVS and NSA-DEVS

The roots of NSA-DEVS are based on PDEVS [3] and

RPDEVS [4]. Similar to these formalisms, concurrent

events are not resolved at the level of coupled models.

In contrast to Classic DEVS, there exists no Select func-
tion at the level of coupled models.

In NSA-DEVS, the handling of simultaneous inter-

nal and external events, termed confluent events, must

be specified at the atomic model level. However, as out-

lined in Section 1.1, the approach differs significantly

from that of PDEVS.

Analogous to Classic DEVS, NSA-DEVS prohibits

multiple simultaneous external events on an input port.

However, it does support simultaneous input messages

on different ports.

With direct support for Mealy behavior in NSA-

DEVS, the segmentation of state changes into event

type-specific transition functions has been merged into

a single state transition function δ . Moreover, all three

event types (external, internal and confluent) prompt a

call to the output function λ , followed by a transition to

a new state using δ , and the re-scheduling of the next

internal event via the ta function.

As detailed in Section 1.1, NSA-DEVS excludes

proper transitory states with a lifetime of zero. Thus,

internal events are always scheduled by the function ta
with a value greater than zero, even if infinitesimal.

2.2 Adapted and New Modeling Elements

The differences in modeling and processing an atomic

model between Classic DEVS and NSA-DEVS require

the adaption and incorporation of some new modeling

elements into the DEVS diagram. Figure 2 provides a

summary of the diagram elements for NSA-DEVS.

The basic structure of the DEVS diagram shown in

Figure 1 with the division into three parts: (i) name

field, (ii) phase diagram, and (iii) variable definition,

has been retained. The representation of ports and

phases is also unchanged. The case study in Section

3 shows that it is sometimes useful to split the phase

diagram into sub-diagrams. In order to always be able

to clearly identify the initial phase, the initial transition

has been adopted from Harel’s statecharts. In NSA-

DEVS, phase transitions can occur due to external, in-

ternal and confluent events. Although there are formally

three event types in NSA-DEVS, only two line types

are used for phase transitions in the adapted DEVS di-

agram. Phase transitions due to internal and conflu-

ent events are displayed with a dot-dash line. Due to

the extended annotations at the phase transitions, ex-

plicitly internal events can still be clearly distinguished

from confluent events in the diagram. In addition, the

element condition junction with priorities already in-

troduced by Freymann [17] for DEVS diagrams was

adopted. This allows phase transitions to be summa-

rized and case distinctions to be defined, which im-

proves the clarity of the diagram.

inportName?msg

inports?

BUSY
@

IDLE
@

portName:msgType

2

1

@[guard]

/{outportName!msg,...,
stateVar1=value,...}

%

Item Description

Input or output port
with name and
permitted message type

State phase with value
of the phase variable
and it's remaining
lifetime until the next
internal event;

Initial state phase

Condition junction
and Priorities for
modeling case
distinctions in phase
transitions

Phase transition
annotations: External
event as message with
type and value at input
port Name

Read all input ports

Definition of a
transition guard with
guard result true or false

Transition actions,
defining output
messages with: message
msg at output port
Name, and updates of
ordinary state vaiables

Comment

Phase transition due
to an external ()
or internal/confluent
() event

Figure 2: Summary of modeling elements of the NSA-DEVS
Diagram for atomic models.

Due to the different semantics of NSA-DEVS and

Classic DEVS, the annotations at phase transitions have

ASIM 2024 Tagungsband Langbeiträge, 27. Symposium Simulationstechnik, Univ. d. Bundeswehr München, 4.- 6. 9. 2024

222

been partially changed. The annotation of an exter-
nal event on a single input port is unchanged with

inportName?msg. However, NSA-DEVS also supports

simultaneous events on different input ports. For this

purpose, the notation inports? is introduced. It specifies

reading messages from all input ports simultaneously

where ports without a message are set to empty mes-
sage (/0). The rules for defining guards have not been

changed. The transition actions (/{actions}) specifi-

cation has been extended by defining output messages
and updates of ordinary state variables as actions. The

change arises from the semantics of NSA-DEVS: Un-

like Classic DEVS, Mealy behavior is modeled without

transitory states, meaning that external events can im-

mediately trigger output events. The general relocation

of output messages to the action part ensures uniform

indication of cause and effect for all event types.

Comments marked with % can be inserted in all

three subfields of the DEVS diagram.

3 Case Study: Simple Queuing
System

This section demonstrates the specification of a sim-

ple queuing system (SQS) using generic atomic mod-

els, usually organized in a model base. Figure 3 shows

the structure of the SQS as a coupled model, developed

within the NSA-DEVS M&S environment [11]. The

associated model base provides an atomic model for

recording statistical variables provided by ports such as

nq (number of entities in queue) and ns (number of oc-

cupied servers).

Figure 3: Coupled model SimpleQueuingSystem.

Figure 4 shows the DEVS diagram specifying the

generator. The top box defines the name of the atomic

model class, and the configurable variables, such as the

interarrival time tG of the entities. The bottom box de-

fines all variables. The state variable E is of type En-
tity, which defines a field variable id. This is initialized

with the start ID, set by the configurable variable n0.

The phase diagram in the middle shows the two phases

with the initial phase PROD. After a time advance of tG
time units, an internal event @tG is triggered. This re-

sults in two actions: (i) sending an output message with

the current entity E at port out and (ii) incrementing the

state variable E.id. The guard @[E.id − n0 < nG] de-

cides whether a phase transition occurs back to PROD

or to FINISH. In FINISH, the generator becomes inac-

tive due to the defined time advance @∞. The variable

τ is a default variable and should be defined for each

atomic model according to the NSA-DEVS specifica-

tion. But it is irrelevant for the generator and could be

omitted here as it does not define input ports.

am_generator(tG,n0,nG,tau)
%tG interarrival time
%n0 id of first entity
%nG total number of entities to create
%default tau = 0+1

PROD
@tG

FINISH
@

/{out!E, E.id++}

@[E.id-n0<nG] 1
2

out:

Figure 4: Atomic model class am_generator.

Figure 5 shows the DEVS diagram specifying the

atomic model class for the queue. The queue works

according to the push principle, i.e. it releases entities

until it receives a blocking event. The advantage over a

pull queue policy is a reduction in the number of events

when the queue stores entities for an N-server, i.e. a

server with a capacity greater than one.

The diagram defines an input and output port for the

entities E, an input port bl : {0,1} for blocking and un-

blocking events and a port for outputting the current

number of entities in the queue (nq : N). The phase
variable defines four phases, and the three ordinary state

variables are defined: (i) a list q for storing entities E,

(ii) the input delay time τ and (iii) the internal delay

time τD. The comment in the top box notes that the con-

figurable variables are set to their default values, mak-

ing τD > τ . This means that simultaneous input events

are processed with an infinitesimal time interval before

internal events. The type List for storing entities defines

typical list operations, which are noted in the diagram

ASIM 2024 Tagungsband Langbeiträge, 27. Symposium Simulationstechnik, Univ. d. Bundeswehr München, 4.- 6. 9. 2024

223

as follows:

• #q . . . number of elements in queue

• q+(E) . . . insert element E into queue

• q–(1) . . . remove first element from queue

• q(1) . . . read first element from queue without

delete

The phase diagram is divided into sub-diagrams,

which are separated from each other by a solid line.

The first diagram shows the four phases with the initial

phase EmptyFree and all possible transitions from Emp-
tyFree (marked with a bold box) to other phases. The

inports? transition annotation indicates that this transi-

tion occurs, if a message is received at one of the input

ports (in,bl) or at both ports simultaneously. If the first

guard @[in = E] is not satisfied, only a transition to

EmptyBlocked occurs. Otherwise, an output message

with the number of entities in the queue is sent to port

nq and the new entity E is inserted into list q. The sec-

ond guard @[bl = 1] checks whether a blocking event

is present at the same time and regulates the transition

to QueuingBlocked or to QueuingFree. A transition to

phase QueuingFree always involves the scheduling of

an internal event with an infinitesimal time advance τD.

The second diagram describes all possible transi-

tions originating from EmptyBlocked. This phase is

also only left by an external message. If only an

unblocked message bl = 0 is received, a switch to

EmptyFree occurs. In the case of an incoming entity,

the guard @[in=E] is satisfied and the same actions are

performed as described in the first diagram. If an un-

blocked message bl = 0 is also present, then the guard

@[bl = 0] is satisfied and a transition to QueuingFree
occurs, otherwise to QueingBlocked.

The third diagram specifies the transitions that orig-

inate from QueuingBlocked. In case of an incoming

entity in = E, the same actions are performed as in the

two previous diagrams. The second guard @[bl = 0]
checks for an unblocking event and decides whether to

switch to QueuingFree or to return to QueuingBlocked.

The most complex case are the transitions originat-

ing from QueingFree. For a better overview, the pos-

sible transitions are shown in two sub-diagrams. As

mentioned above, QueuingFree schedules an internal

event with infinitesimal time advance τD to send an en-

tity stored in the list q on port out. However, the system

can receive a blocking message bl = 1 at the same time.

am_queue(tau,tauD)
%push queue, default tau=0+1 , tauD=0+2

Empty
Free
@

Empty
Free
@

Empty
Blocked

@

Empty
Blocked

@

Queuing
Blocked

@

Queuing
Blocked

@

Queuing
Blocked

@

Queuing
Free
@ D

Queuing
Free
@ D

Queuing
Free
@ D

Empty
Free
@

Queuing
Blocked

@

Queuing
Free
@ D

inports?

%in= ,bl=1
@[in=E]/
{nq!#q+1,q+(E)}

@[bl=1]

2

2 1

2

2

1
1

1 2

1

2

out:
nq:

in:
bl:{0,1}

%in= ,bl=0

inports?
@[in=E]/
{nq!#q+1,q+(E)}

@[bl=0]

%bl is 1 or

inports?

@[bl=0]

@[in=E]/
{nq!#q+1,q+(E)}

inports?

1

@[bl=1]2

@[in=E]/
{nq!#q+1,
q+(E)}

/{out!E=q(1)}

@[in=E]/{nq!#q,
q-(1),q+(E)}

/{nq!#q-1,q-(1)}

@[#q=0] %#q>0

11

1

1

2

2

2

Queuing
Blocked

@

Queuing
Free
@ D

inports?

@[in=E]/
{nq!#q+1,q+(E)}

1

1

2

@[bl=1]
2

Figure 5: Atomic model class am_queue.

The simultaneous occurrence of both events is resolved

by the hyperreal state variables τ and τD. The setting

τD > τ ensures that no entity is sent when a simulta-

neous blocking event is received. The specification of

this confluent event situation is shown in the first sub-

ASIM 2024 Tagungsband Langbeiträge, 27. Symposium Simulationstechnik, Univ. d. Bundeswehr München, 4.- 6. 9. 2024

224

diagram of phase QueingFree.

The inports? transition annotation indicates that all

input ports are checked for messages before the in-

ternal event is triggered. If a blocking message bl =
1 is present (@[bl = 1] is satisfied), a transition to

QueingBlocked occurs. The guard @[in = E] checks

whether an entity E is present at the input port in at the

same time. If so, the current queue length is sent as an

output message to port nq and the new E is inserted into

the list q. If there is no message at port bl or bl = 0 the

transition action /{out!E = q(1)} is executed. The first

entity is read from the list q and sent to port out. It is

then checked whether an entity is present at the input

port in at the same time. If so, an output event with

the queue length is sent to port nq, the list q is updated

(delete sent E and insert arrived E) and the system re-

turns to QueingFree to output another entity. If no new

entity has arrived, the current queue length is sent to

port nq and the list q is updated (delete sent E). The

last guard @[#q = 0] checks whether the list q is empty

and regulates the transition to EmptyFree or the return

to QueuingFree.

am_server(ts,tau)
%ts service time
%default tau = 0+1

IDLE
@

BUSY
@

/{working!0,
 job= }

in?E/{ = -e}
%entity is discarded
%e is elapsed time

/{out!job}

@[in?E] /
{working!1,
 job=E, =ts}

in?E/
{working!1,
job=E, =ts}

out:in:

working:{0,1}

1

2

Figure 6: Atomic model class am_server.

Even though the next internal event is scheduled

in QueingFree with infinitesimal time advance τD, ex-

ternal input messages may be present during this time

span. The specification of this case is shown in the sec-

ond sub-diagram for QueingFree. All input ports are

checked by inports? for external messages. If the first

guard @[in = E] is satisfied, the new queue length is

sent as output message and the new entity is inserted

into the queue list q. The second guard @[bl = 1]
checks if a blocking message has been received and de-

cides whether a transition to QueingBlocked or a return

to QueingFree takes place.

am_terminator(tau)
%default tau = 0+1

IDLE
@ in?E/{out!n+1, n++}

out:in:

Figure 7: Atomic model class am_terminator.

Although the atomic model class am_queue sup-

ports N-server, only the specification of a single server
is discussed below, shown as a DEVS diagram in Figure

6. The specification does not take into account the out-

put port ns shown in Figure 3, which outputs the number

of occupied servers, as this information is not of inter-

est for a single server. The server is configurable with

a service time ts. The infinitesimal input delay time

τ can be set to the default value. The initial phase is

IDLE. When an entity E arrives at port in, then: (i) a

server occupancy event is sent to the port working, (ii)

the entity and the service time are stored in ordinary

state variables, and (iii) the server switches to BUSY,

where an internal event @σ is scheduled according to

the service time. The server checks for external events

in the BUSY phase, but does not register incoming en-

tities (you could count them). The timeless return to

BUSY, however, requires a rescheduling of the internal

event using the action σ =σ −e. The internal variable e
stores the elapsed time since the last event. If the inter-

nal event is triggered after the service time has expired,

an external event may occur at the same time (conflu-

ent event). In any case, an output message is sent with

the served entity job via port out. The guard @[in?E]
checks if an external event occurs at the same time. In

this case a server busy output message (working = 1) is

sent, the new entity E is scheduled as the current job in

service, and the server returns to BUSY. Otherwise, a

transition to IDLE occurs, a server is free output mes-

ASIM 2024 Tagungsband Langbeiträge, 27. Symposium Simulationstechnik, Univ. d. Bundeswehr München, 4.- 6. 9. 2024

225

sage (working = 0) is sent, and the state variable job is

updated.

Figure 7 shows the specification of the terminator.

In addition to the model structure in Figure 3, the model

class am_terminator defines an output port out : N.

It counts the number of incoming entities and sends

changes of the counter as an output message to port out.

4 Conclusion
At first glance, the specification of atomic systems with

a DEVS diagram may seem confusing, especially the

complexity of the notations at phase transitions. How-

ever, it must be emphasized that the adjusted DEVS di-

agram can represent the complete dynamic specifica-

tion of atomic models and can be converted one-to-one

into program code for the NSA-DEVS simulation envi-

ronment, where atomic NSA-DEVS models are imple-

mented as a MATLAB class and organized in a model

base.

The developers’ experience is that the specification

with DEVS diagrams is very helpful after a short train-

ing period, especially in the system design and system

documentation phase. This becomes especially clear,

when implementing complex atomics like an N-server

[10]. Its graphical description has also been very help-

ful during the implementation and debugging phases,

and documents the complex code in a clear-cut way, that

highlights the basic underlying ideas.

References

[1] Zeigler BP. Theory of Modeling and Simulation. New

York: Wiley-Interscience, 1st ed. 1976.

[2] Zeigler BP, Muzy A, Kofman E. Theory of Modeling
and Simulation. San Diego: Academic Press, 3rd ed.

2019.

[3] Chow ACH. Parallel DEVS: A Parallel, Hierarchical,

Modular Modeling Formalism and its Distributed

Simulators. Transactions of The Society for Computer
Simulation International. 1996;13(2):55–67.

[4] Preyser FJ, Heinzl B, Raich P, Kastner W. Towards

Extending the Parallel-DEVS Formalism to Improve

Component Modularity. In: Proc. of ASIM-Workshop
STS/GMMS. Lippstadt. 2016; pp. 83–89.

[5] Preyser FJ, Heinzl B, Kastner W. RPDEVS: Revising

the Parallel Discrete Event System Specification. In:

9th Vienna Int. Conf. Mathematical Modelling. Wien.

2018; pp. 242–247.

[6] Junglas P. NSA-DEVS: Combining Mealy Behaviour

and Causality. SNE Simulation News Europe. 2021;

31(2):73–80. doi: 10.11128/sne.31.tn.10564.

[7] Junglas P. Mathematical Problems due to

Oversimplication. In: 4th Northern-Light Symposium
on Mathematical Education in Engineering.

Hamburg-Bergedorf. 2024; pp. 27–41.

[8] Jammer D, Junglas P, Pawletta T, Pawletta S. A

Simulator for NSA-DEVS in Matlab. SNE Simulation
Notes Europe. 2023;33(4):141–148. doi:

10.11128/sne.33.sw.10661.

[9] Jammer D, Junglas P, Pawletta T, Pawletta S.

Implementing Standard Examples with NSA-DEVS.

SNE Simulation Notes Europe. 2022;32(4):195–202.

doi: 10.11128/sne.32.tn.10623.

[10] Junglas P, Jammer D, Pawletta T, Pawletta S. Using

component-based discrete-event modeling with

NSA-DEVS – an invitation. In: Proc. of ASIM 2024 –
27. Symposium Simulationstechnik. Munich, Germany.

2024; .

[11] CEA Wismar. NSA-DEVS on GitHub.

https://github.com/cea-wismar/
NSA-DEVSforMATLAB.

[12] Jammer D, Junglas P, Pawletta T, Pawletta S. Modeling

and Simulation of a Real-world Application using

NSA-DEVS. SNE Simulation Notes Europe. 2023;

33(4):149–156. doi: 10.11128/sne.33.tn.10652.

[13] Song HS, Kim TG. DEVS Diagram Revised: A

Structured Approach for DEVS Modeling. In: Proc.
Eur. Simulation Conf. Eurosis, Belgium. 2010; pp.

94–101.

[14] Özmen Ö, Nutaro J. Activity Diagrams for DEVS

models: A Case Study Modeling Health Care Behavior

(WIP). In: TMS/DEVS, SCS Spring Simulation
Symposium. Alexandria. 2015; .

[15] Prähofer H, Pree D. Visual Modeling of DEVS-Based

Multiformalism Systems Based on Higraphs. In: Proc.
of the Winter Simulation Conference. Los Angeles, CA

USA. 1993; pp. 595–603.

[16] Harel D. STATECHARTS: A Visual Formalism for

Complex Systems. Science of Computer Programming.

1987;pp. 231–274.

[17] Freymann B. Task-Based Multi-Robot Controls Based

on the SBC Framework and DEVS [dissertation]. Ph.D.

thesis, Technical Univ. Clausthal in coop. with Univ. of

Appl. Sciences Wismar, Wismar, Germany. 2022. doi:

10.11128/fbs.40.

ASIM 2024 Tagungsband Langbeiträge, 27. Symposium Simulationstechnik, Univ. d. Bundeswehr München, 4.- 6. 9. 2024

226

