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Abstract  

The aim of symbolic analysis that has its origin in the design of analog circuits is the 
extraction of dominant system behavior by automated derivation of approximated symbolic 
formulas. Since exact symbolic analysis will yield exceptionally complex expressions even 
for rather small systems a class of symbolic approximation techniques have been developed 
that allow a reduction of the complexity of symbolic equations and their later solution by 
means of mixed symbolic and numerical strategies. Hence, it becomes possible to reduce the 
underlying nonlinear differential-algebraic systems of equations (DAE systems) of 
component-based networks and systems to a behavioral description of a predefined accuracy. 
It is a major advantage of the approach that the model simplification is performed by an 
automatic error control and that the simplified model is physically interpretable again. The 
contribution will give an overview of the symbolic tool Analog Insydes (www.analog-
insydes.de), algorithms for extraction of dominant behavior of linear systems, e.g. formulas 
for poles and zeros as well as algorithms for generating behavioral models from nonlinear 
DAEs. Moreover, the underlying methodology has been extended to the application of 
analysis and modeling of gas-pipeline nets and mixed electrical and mechanical systems. For 
the latter a library was developed in cooperation with the Fraunhofer IIS/EAS for symbolic 
models of micro-mechanical elements that can be connected to networks, even together with 
electrical components.  

Keywords: symbolic analysis, model reduction, behavioral modeling, multi-physical 
modeling. 
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1 General 

The paper will give an application oriented 
introduction into symbolic analysis of analog 
electronic circuits and multi-physical systems using 
the EDA tool Analog Insydes. Starting with a brief 
review of the problems in current industrial analog 
circuit design an overview of the state of the art 
concerning the functionality of symbolic analysis 
methods will be given. A modeling methodology will 
be introduced where the netlist-based modeling 
language has been extended for the handling of multi-
domain and vector-type through and across variables. 
With this approach, an automated setup of symbolic 
model equations in terms of a differential-algebraic 
system of equations starting from a netlist description 
is possible. This allows the application of DAE 
solvers for numerical simulation as well as the 
application of symbolic model reduction methods of 
multi-physical systems. Special attention will be 
devoted to the subject of symbolic approximation 
strategies in general but particularly to the 
approximation of linear and nonlinear equations 
resulting from electrical and multi-physical systems. 
The strategies have been successfully applied to 
analyze industrial analog circuits, e.g. extracting 
symbolic formulas for their dominant and critical 
poles and zeros as well as for the automatic generation 
of behavioral models from nonlinear dynamic 
equations of multi-physical systems.  

2 Introduction 

With the decreasing structural size going along with 
expanding complexity of technical systems there is an 
emerging demand for new design methods and 
modeling support. This becomes even more important 
because of the increasing heterogeneity of technical 
systems. In particular, for the design of mechatronical 
systems this leads to the following problem: There are 
established tools for the design of the mechanical or 
electrical parts like FEM, multi-body, or circuit 
simulators, but those are usually specialized on their 
physical domain. Therefore, the consideration of 
interactions between the mechanical and electrical 
components is extraordinary laborious. These 
interactions often have to be taken into account 
because the assembly of independently optimized sub-
components usually does not lead to an optimal 
system. On the other side, considering coupling 
effects results in new challenges in many aspects, 
which lead from the need of designers competence in 
multiple disciplines (electrical and electronic as well 
as mechanical engineering, physics and mathematics) 
up to the high complexity of the mathematical models 
which demand the employment of adapted simulation 
tools.  

Such software has to be capable of dealing with the 
multi-physical aspects of such systems. There are 
several suitable modeling languages like VHDL-

AMS [1] or Modelica [2] and corresponding 
simulators like AdvanceMSTM or DymolaTM available. 
They allow for a modularized modeling of the 
complete system or parts of it with arbitrary accuracy. 
But the modeling process of heterogeneous systems is 
very time consuming and, moreover, the resulting 
mathematical models become very complex even for 
comparatively small systems, posing numerical 
problems with respect to robustness, efficiency, and 
stability.  

Today the simulation of industrial-sized systems lies 
beyond the limits of this approach. In order to reduce 
the numerical effort, model reduction techniques 
become more important. In this paper, we present a 
modeling approach which is based on symbolic 
methods and can be adapted to multi-physical systems 
due to its general mathematical principle. This 
includes an automatic generation of behavioral models 
as well as model reduction for electrical as well as for 
mechatronical components and a combination of both. 
Such models allow due to their reduced complexity an 
interactive processing and a more efficient simulation 
of the overall system. This may even enable the 
application of optimization and control methods.  

The basic principles of this modeling approach, i.e. 
the idea of model reduction, and the tool which has 
been used, are described in Chapters 3 and 4. The 
Chapters 5 and 6 give examples from the domains 
hydraulics and mechatronics, respectively. Finally, in 
Chapter 7 a summary is given. 

3 Symbolic Modeling Approach 

3.1 Symbolic Analysis 

The symbolic modeling principle originates from the 
field of analog circuit design where the motivation has 
been to gain a deeper circuit understanding by 
interpretation of analytic formulas. In this context 
dedicated techniques for linear as well as for nonlinear 
applications have been developed [3]. Starting from a 
netlist description – the topological representation of 
an analog circuit, which includes information about 
the connecting graph of the circuit’s components and 
corresponding device models and parameters – it is 
possible to formulate a mathematical equation system 
which in general is a nonlinear differential-algebraic 
equation system (DAE system). The equations consist 
of Kirchhoff’s current and voltage laws as well as the 
circuit element characteristics given by the 
corresponding current-voltage relations. The equation 
system can be set up automatically using standard 
formulation techniques, e.g. Modified Nodal Analysis 
(MNA) or Sparse Tableau Analysis (STA). The 
decisive property of such an equation system is that it 
can be analytically parameterized in the system 
parameters, e.g. using the resistor value R1 instead of 
the numerical value 10Ω, which motivates the term 
“symbolic” . Due to the symbolic formulation, the 
equation system is valid not only for one dedicated 
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parameter set, but for a complete class of models with 
arbitrary parameter values. Using computer-algebra 
methods it is possible to analytically investigate the 
behavior of the corresponding system.  

The above described symbolic methods are integrated 
in the software package Analog Insydes ([4], 
www.analog-insydes.de), which is an add-on to the 
computer-algebra system Mathematica [5]. The tool 
includes functionality for analysis, modeling, and 
optimization of linear and nonlinear circuits of 
industrial size. Analog Insydes is based on a 
hierarchical netlist description language that allows to 
automatically set up symbolic circuit equations. 
Besides standard electrical engineering analysis like 
AC, DC, and transient analysis as well as  
visualization methods, dedicated model reduction 
methods are available within Analog Insydes that will 
be explained in more detail in the next sections. 
Moreover, the tool has been integrated into industrial 
design environments and frameworks and, thus, 
includes interface functionality for exchanging data 
with commercial circuit simulators like EldoTM, 
PSpiceTM, SaberTM, or SpectreTM. 

3.2 Symbolic Model Reduction 

Practical application of symbolic analysis would have 
been rather limited without application of symbolic 
approximation techniques. Even for relatively small 
systems the symbolic solutions e.g. for transfer 
functions are of such a high complexity that an 
interpretation of the equations or the extraction of an 
in-depth system understanding gets impossible. For 
this reason it is necessary to incorporate methods 
which reduce the complexity of symbolic expressions, 
i.e. the equations must be simplified. Indeed these 
techniques hold the key in modern symbolic circuit 
analysis. 

The concept “symbolic approximation”  describes a 
whole class of mixed symbolic/numeric procedures 
for the simplification of symbolic expressions. These 
completely automated procedures are based on 
numerical evaluations and simulations to determine 
the approximation error. This is different from manual 
simplifications that are mainly based on qualitative 
considerations (e.g. 

21 RR << ). Automated symbolic 

approximation may yield compact formulae 
expressions fulfilling an error bound specified by the 
user. 

In recent years, numerous symbolic approximation 
algorithms have been developed and implemented in 
symbolic circuit analysis programs. According to the 
stage in the circuit analysis process in which they are 
applied, these algorithms are categorized in the 
literature as Simplification Before Generation (SBG) 
[7][8][9][10]. Simplification During Generation 
(SDG) [11][12][13], and Simplification After 
Generation (SAG) techniques [14][15].  

One of the central prerequisites of the symbolic 
analysis flow presented in the next section was the 
development and implementation of efficient 
symbolic approximation algorithms which impose no 
restrictions on the formulation of circuit equations, 
neither linear nor nonlinear, or the set of circuit 
elements that may be used.  

Equation-based approximation procedures own all 
these requested properties since they are already 
applied on the level of circuit equations before the 
solution is determined (SBG). The philosophy behind 
equation-based approximation is to follow the 
methodology of a circuit designer or engineer who 
introduces his simplifications already when 
formulating equations. Thus, the complexity of the 
problem and the mathematical effort to solve or 
process the system is reduced substantially.  

Since this paper intends to give an overview of 
methodologies and results, only the underlying 
principle of equation-based approximation is 
presented. Figure 1 shows a general flow chart of the 
algorithm.  

 

Figure 1: Flow of equation-based approximation 

Equation-based approximation starts with the system 
of symbolic linear or nonlinear equations and a list of 
corresponding numerical reference values called 
design point. 

Based on these numerical reference values the system 
of symbolic equations is evaluated and solved. This 
information is subsequently used to generate a term 
ranking. The term ranking mechanism plays a key role 
in the algorithm. Its task is to compute an order of all 
symbolic terms of the underlying equations such that 
the terms are sorted with respect to their influence on 
the solution. Ranking algorithms are an important 
subject of research since a large variety of different 
circuit characteristics may be of interest which has to 
be taken into account by the algorithm. For example in 
linear analysis magnitude, phase as well as pole and 
zero locations are of interest while in nonlinear 
analysis DC transfer, transient behavior, distortion, 
etc. are to be captured by the approximated system. 
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In the next step the output of the ranking algorithm is 
processed by the term removal mechanism which 
removes one or more terms from the system of 
symbolic equations. Now, this manipulated system 
with one or more terms deleted is passed to the error 
checking routine. Here the accumulated numerical 
error caused by the term removal is calculated and 
compared with the given error bound. If the error 
bound is exceeded the last term removal is undone and 
the algorithm terminates returning the approximated 
system. If the error bound is not exceeded the next 
terms from the term ranking list are selected and 
removed from the system followed by the error 
checking procedure as already described before. There 
are several extensions to the algorithm, e.g. symbolic 
simplification and elimination steps as well as more 
sophisticated term removal operations, e.g. block or 
cluster removals of elements and to use the error 
checking routine to control the term ranking [17]. 

After these preparation steps the actual 
approximation process in which iteratively different 
simplification strategies are used is carried out [16]: 

 
Algebraic simplification: The complexity of the 

system of equations is reduced by exact algebraic 
transformations (e.g. variable elimination or 
decoupling of independent blocks). 

 
Example: 
The equations 

3213

322

211

yxxx

yyx

yyx

+−=
+=
+=

 
can be replaced by 

13 yx =  
 
Branch simplification: Branches of piecewise-

defined functions, which are not relevant during the 
simulation, are deleted from the equations. 

 
Example: 
The equation 
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can be replaced by  

211 xxxy ⋅+= , 
if 12 >x  during the whole reference simulation. 

 
Switch simplification: For models that are 

implemented suitably with respect to physical effects 
these different effects may be taken into account 
(switch parameter s with value 1) or neglected 
(switch parameter s with value 0) [18]: 

 
Example: 
The equation 

xsxfsxM ��� η21 )( −=    

can be replaced by 

  )(xfxM =��  
Here, 

1s   and 
2s  are switches for turning on and off 

certain physical effects. 
 
Term substitution: Terms are replaced by the mean 

value obtained in the reference simulation. 
 
Example: 
The equation 

))(( 213 xfxRx +⋅=   
can be replaced by  

)23.1( 13 +⋅= xRx  
 
Term deletion: Terms are removed from the system 

of equations. 
 
Example: 
The equation 

 
can be replaced by 

113 xRx ⋅=  
 
The item “ term”  describes all symbolic expressions 

that appear as summands in equations, and that can 
consist of expressions themselves again.  

The first two simplification methods do not 
influence the numeric solution of the DAE system; 
however, they can influence the numeric stability of 
the system of equations like the other 
(approximating) steps. For this reason dedicated 
methods have been developed [17] that monitor the 
numerical stability (or index) during the 
simplification process. 

Switch simplification, term substitution, and term 
deletion are approximations and lead to errors or 
deviations from the original solution. These 
deviations are checked at each step by comparison 
with the reference solution. If the deviations lie 
within a user-given tolerance specification, the 
algorithm continues with the next simplification step. 
Otherwise the simplification step is undone and – if 
necessary – the cluster information is updated before 
the next simplification step is performed. This 
process is repeated, until no further simplification 
steps can be carried out with respect to the given 
error tolerances. 
 

4 Modeling Methodology  

4.1 Bottom-up Model Generation Flow 

The model generation process depicted in Figure 2 
is based on the symbolic analysis tool Analog 
Insydes. This powerful tool offers the functionality 
to automatically set up circuit equations from a 
circuit netlist and to use them as basis for generating 
a behavioral model. Symbolic device models 
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(corresponding to the simulator’s device models) are 
used to make the strategy as accurate as the circuit 
simulation itself. The circuit equations are usually set 
up in an extended modified nodal analysis (MNA) 
for nonlinear equations. The resulting dynamic 
nonlinear equations contain the network equations in 
MNA (as used in most circuit simulators) as well as 
the nonlinear element relations resulting from 
symbolic device models. In general, one deals with 
DAE systems. An example for such a generated 
system of circuit equations is shown in Figure 3. 

Analog Insydes

Circuit Netlist

Equation Setup

Model Reduction

Analytic Model

Model Export

Netlist Import

Symbolic Device Models

Circuit Equations

Simplified Eqs.

 
Figure 2:  Proposed bottom-up modeling flow 

(Analog Insydes) 

 
Model reduction methods can be applied to reduce 

the complexity of the equations by term reduction 
techniques [6]. The benefit of this symbolic 
approximation technique is to ensure a user-specified 
accuracy. Hence, this is one of very few methods that 
allow satisfying a predefined accuracy of the 
resulting model. Since the equations’  complexity 
decreases while the resulting error increases with the 
degree of model reduction, it is up to the user to find 
a suitable trade-off between complexity and accuracy 
of the model. Experiments show that for reasonable 
error margins (5-10%) the complexity can be 
reduced very efficiently yielding a performance 
improvement of about factor 10 to 100. 

Finally, the behavioral model can be generated 
from the DAE by using Analog Insydes’  model 
export function [20]. It generates several AHDLs 
(VHDL-AMS, Verilog-A, etc.) and hence supports 
the creation of models for the most commonly used 
behavioral simulators.  

 

 

Figure 3: Example of an automatically generated DAE 
system 

4.2 Assignment of the Methodology 

Because of the general mathematical approach of the 
model processing procedures the methods originally 
developed for analog circuits can be transferred to 
other application fields. Analog Insydes’  capabilities 
for automatic generation of symbolic equations and 
their approximation can be applied to any system that 
is described by generalized Kirchhoff equations by 
exploiting the analogies to electronic circuits (see 
Table 1). To allow this, an implementation for the 
connection of through and across variables of system 
components was necessary. In this way automated 
equation setup and symbolic approximation methods 
could be extended for the analysis of gas-pipeline nets 
(hydraulics) and mechatronic systems. 

domain 
across 

var iables 
through 
var iables 

electronics voltage V current I 
displacement 

(ux, uy, uz) 
force 

(Fx, Fy, Fz) mechanics 
rotation 

(ϕx, ϕy, ϕz) 
torque 

(Mx, My, Mz) 
hydraulics pressure P mass flow Q 

Table 1: Across and through variables 
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5 Gas-pipeline Nets  

While voltages and currents are used as system 
variables for analog electrical circuits gas pipelines are 
characterized by pressure P and mass flow Q. To 
model the static behavior of a gas pipeline the 
following relation is used: 

2 2
2 5

16
a b

zRTL
P P Q Q

D M

λ
π

− =
 

Pa and Pb mark the pressure at node a and b, Q the 
mass flow in the pipeline, and  λ the Darcy-Weisbach 
friction factor that can be determined by 

10

3.7
2log

Dλ
ε

� �= � �
� 	 

Further parameters can be found in Table 2. In a 
similar way other system components like 
compressors, pressure and flow regulators, consumers, 
and sources can be described [19]. 

M Mol mass 

R gas constant 

T temperature 

ε roughness of the pipeline wall 

z compressibility factor 

λ Darcy-Weisbach friction factor 

D diameter 

L length 

Table 2: Pipeline model parameters 

Figure 4 shows the high pressure gas pipeline net of 
Belgium which contains 6 sources and 8 consumers, a 
network of 24 pipelines, and 2 compressors. The 
system of equations derived from it which shall serve 
to calculate pressure in different junction nodes and 
network parts as function of sources and consumers 
consists of 109 equations with altogether 97 
parameters. The result after the application of the 
model reduction techniques from Section 3.2 for 3 or 
7 bar of error tolerance are summarized in Table 3. 
The mean pressure is about 50 bar. It should be 
noticed how larger model reductions can be obtained 
by increasing the error tolerance. 

 full model 3 bar  7 bar  

equations 109 14 10 

parameters 97 63 47 

Table 3: Dimension of system of equations of full and 
reduced models 

In this application case it especially turned out that the 
resulting simplified system of equations can be 
interpreted again in the form of component equations 
and can be mapped to a reduced network (consisting 
of only 10 pipelines). The nodes of the removed 
pipelines collapse to a new node ("pressure zones", 
Figure 4). 

 

Figure 4: Reduced model (3 bar) of the Belgian high 
pressure gas pipeline net. Ice blue: pressure zones, 

deep blue: remaining pipelines 

6 Mechatronics  

6.1 Basics 

To be able to treat mechanical systems with the 
introduced modeling approach, these are taken to 
pieces into finite elements which are firmly connected 
to each other in the network nodes. Displacements and 
rotations as a result of force and torque influences are 
regarded as small. Forces, torques, displacements, and 
rotations are used instead of currents and voltages 
here. 

In cooperation with the Fraunhofer IIS/EAS a library 
which contains linear and nonlinear beam elements as 
well as different force and displacements sources was 
developed providing symbolic models of micro 
mechanical elements. 

These element models describe the dynamic behaviour 
of the components in the form of dynamic equations. 
In the linear case these have the form 

( )1 1 1− − −= − + +F G MG u G DG u G KG u�� �
 

M  is the mass matrix, D the damping matrix, and K  
the stiffness matrix of the finite elements. 
Furthermore, 

( , , , , , , , , , , , , )a a a a a a b b b b b b
x x x x x x x x x x x xf f f m m m f f f m m m=F �  

is the vector of the through variables (forces and 
torques) in the pins a, b, …, and 

( , , , , , , , , , , , , )a a a a a a b b b b b b
x x x x x x x x x x x xu u u u u uϕ ϕ ϕ ϕ ϕ ϕ=u �  

is the corresponding vector of the across quantities 
(displacements and torsions). With G the orthogonal 
transformation matrix which transforms the node 
variables of the global reference system into a local  
reference system for which the matrices M , D and G 
are formulated. Due to the vector quality an element 
with two pins (e.g. a beam element) is therefore 
described by a system of 12 equations. 
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The condition of the continuity of the displacements in 
the nodes corresponds to Kirchhoff’s voltage law and 
the principle of d’Alembert corresponds to 
Kirchhoff’s current equations. 

6.2 Behavioral Device Models 

Due to its origin Analog Insydes comes with a pre-
defined device model library for analog electronic 
components only. For the modeling of mechatronical 
systems a device model library containing 
corresponding mechanical components is required. All 
device model implementations make use of the 
standard Analog Insydes modeling language in terms 
of a behavioral model description. This approach 
allows for modeling nearly arbitrary element 
characteristics by directly specifying the 
corresponding device equations which in general may 
be a nonlinear DAE system. The Analog Insydes 
model definition is based on a port branch concept 
which is illustrated in Figure 5 considering a nonlinear 
junction diode of the electronic domain.  

 

Figure 5: Diode quantities and branch definition 

The diode has the two terminals anode and cathode 
denoted by the identifiers A and C, respectively. The 
current-voltage relation is given by the following 
device equation for the branch voltage VD and the 
branch current ID  

( )1
VD

VT
D SI I e= ⋅ −

 

IS and VT denote the saturation current and the thermal 
voltage, respectively. The ports of different 
components are interconnected at network nodes. 
Behavioral models are defined in terms of port 
branches, where each unique pair of port identifiers 
( por t 1,  por t 2)  introduces a port branch between 
the model ports por t 1 and por t 2 with a positive 
reference direction from por t 1 to por t 2. The 
associated port variables in the behavioral model 
equations can be referred by means of special 
keywords, which are Vol t age[ por t 1,  por t 2]  
and Cur r ent [ por t 1,  por t 2]  for the electronic 
domain. For the diode example the Analog Insydes 
format for the device equation reads as 

1SI e
� �

= ⋅ −� �
� �
� 	

t

Vol t age[ A,C]

VCur r ent [ A, C]

 

Note that an alternative concept to the port branch 
concept is the currents into the ports and the port 
voltages approach. But this method is not well suited 
for other analysis methods than MNA. Due to the fact 

that Analog Insydes supports different analysis 
methods the port branch concept has been 
implemented. 

If this concept is transferred to mechanical 
components, then a simple component with two ports 
has already six accompanying model branches (e.g. 
see beam element in Figure 6).  

 

Figure 6: Beam quantities and branch definition 

Therefore, the so far scalar-type Analog Insydes ports 
have been extended to the more general case of  
vector-type ports. Within a netlist description this is 
achieved by adding a Net l i s t At t r i but es  
section. This new language object is valid for the 
whole netlist object within it has been defined. One 
simply has to specify the dimension of a 
corresponding netlist node using the 
NodeDi mensi ons  keyword. The syntax is as 
follows: 

Net l i s t At t r i but es[  
  NodeDi mensi ons - > {  
    <node1> - > 6,  
    . . . ,  
    Def aul t  - > 1 
  } ,  
  NodePosi t i ons - > {  
    <node1> - > { <x1>,  <y1>,  <z1>} ,  
    . . .  
  }  
]  
where <node1> denotes the name of the mechanical 
node and { <x1>,  <y1>,  <z1>}  is the 
corresponding numerical coordinate vector, 
respectively. The coordinate information specified by 
the NodePosi t i ons  keyword is useful for 
automatically computing the geometrical parameters 
of the mechanical component. Note that with the 
Def aul t  - > 1 setting one can simply define all 
remaining nodes in the netlist description as being 
scalar type without stating them explicitly which is 
very useful when having multi-physics applications. 
This new language construct is used in the following 
example. 
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6.3 Application Example 

As an example for a multi-physical system we 
consider an acceleration sensor [13] consisting of 
mechanical and electrical parts (see Figure 7). The 
sensor consists of three parallel conducting plates 
which form two serial capacities C1 and C2. The 
central plate can be moved from its balanced position 
(center if RA = RB) resulting in a Hook’s force with 
constant K. In case of an acceleration, the central plate 
moves away from its central position resulting in 
changes of the capacities between the electrical 
connectors E1/E0 and E2/E0. This yields a potential 
drop Vout for the central plate with respect to the 
potential in the idle state.  

 

 

Figure 7: Acceleration sensor with simple circuitry 

The acceleration sensor has one mechanical and three 
electrical ports (the center of mass and each plate). 
The mechanical port has the vector variables 
displacement u and force F. Besides the external 
accelerating force F there are internal forces acting on 
the system. The internal forces result from 
electrostatics, Hook’s law, and damping: 

2 2
1 2

int
02

Q Q
F Kx Dx

Aε
−= − − �

 

Here, Q1 and Q2 are the charges of the plates E1 and 
E2, A is the plate area, ε0 the dielectric constant, and D 
the damping constant. The force acts along the axial 
direction e and accelerates the central plate with mass 
mdyn: 

( )dyn dynF m x= + ⋅e u�� ��
 

Here, x is the local displacement of the central plate 
from the idle position and u the global displacement 
of the acceleration sensor. Forces acting on the static 
mass mstat are the external force F and internal force 
Fint 

. e, yielding the equation of motion:  

int statF m− =F e u��  

The charges Q1 and Q2 depend on the node voltages 
V0, V1 and V2 at the electrical connection ports E0, E1 
and E2: 

( )
( )

1 1 1 0

2 2 2 0

Q C V V

Q C V V

= −

= −  

where the capacitances  C1 and C2 depend on the plate 
distances (idle distance d0) 

1
0

2
0

A
C

d x

A
C

d x

ε

ε

=
−

=
+  

The branch currents E1 to E0 and E2 to E0 are given by 

{ },0 , 1,2i iI Q i= ∈�

 

Because we use six-dimensional port variables 
(displacements and rotation angles), we add trivial 
angular equations with moment of inertia θ  and 
torque M  

{ }, 1,2,3i iM iϕ θ= ∈��
 

Changes of the orientation of the sensor are not 
considered in this example. 

The above equations are implemented as an Analog 
Insydes model called Accel er at i onSensor . 

 

Figure 8: Multi-physics netlist including acceleration 
sensor 

 

Figure 9: Numerical values for all system parameters 
(given in SI units) 

Figure 8 shows its usage within the netlist description 
for the system of Figure 7. The acceleration sensor as 
is oriented in (0, 1, 0) direction. Its connections are 
specified by <node> - > <por t > mappings. The 
electrical ports E0, E1 and E2 are connected at nodes 
e0, e1 and e2 with the circuit. The mechanical port M 
is connected at node m to the point mass and the 
accelerating force. At this node a time-dependent 
force acts towards (0,-1, 0), accelerating the system 
starting at t = 10ms. The corresponding numerical 
values for all model parameters are listed in Figure 9. 
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All component parameters are instantiated by the 
postfix $<comp> where <comp> specifies the 
corresponding component name as given in the netlist. 
For all values which are not set within the netlist, 
default values are used instead. 

This notation is also used for the DAE system shown 
in Figure 11, which has been generated automatically 
from the netlist description. It consists of 39 equations 
for 39 variables, which are named using a similar 
convention: e.g. the local displacement x of the central 
plate of as is named x$as[ t ]  and the third 
component of the displacement in node m is denoted 
by u$m$3[ t ] . Additionally, there are 16 initial 
conditions for the 14 mechanical variables (location 
and rotation, velocity and angular speed, displacement 
and velocity of the central plate) as well as the charges 
on plates E1 and E2. 

For performing the approximation as described in 
Section 3.2, Vout has been chosen as output variable. 
The maximum approximation error has been set to 20 
mV (20%). For these settings, the highlighted 
expressions have been identified to be not relevant for 
the dynamics of Vout. Furthermore, automated exact 
algebraic manipulation finally leads to the DAE 
system shown in Figure 12. The system has been 
reduced to a set of five equations only. Note, that the 
reduction to the y direction (only displacement 
variable u$m$2 is left) and removal of all rotational 
degrees of freedom has been done completely 
automatic. Additional approximations, e.g. removal of 
MDYN$as x$as´ ´ [ t ]  in the dynamics of the 
central plate, have been applied automatically. Finally, 
Figure 10 illustrates a comparison of Vout for the 
original and simplified DAE system. Starting at t = 10 
ms the force accelerates the point mass. In the reduced 
model, the acceleration of the system only depends on 
the point mass (M$mass ), neglecting the mass of the 
sensor (MSTAT$as+MDYN$as ) which is less than 
two percent of the point mass. This finally results in 
the slightly increased absolute value for the stationary 
voltage Vout. The difference in the dynamic behavior 
for t near 10 ms is mainly due to neglecting the inertia 
of the central plate.  

 

Figure 10: Comparison of original (solid) and 
simplified model (dashed) 

 

 

  

Figure 11: Automatically generated DAE system 

   

Figure 12: Simplified DAE system 

7 Summary 

In this paper a new modeling approach for multi-
physical systems is presented, which is based on 
symbolic methods. Such methods have already been 
successfully applied to electronical systems, and 
corresponding modeling tools are available. In order 
to transfer the methodology to multi-physical systems, 
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especially the multi-domain aspects, vector-valued 
variables and the need for adapted device models for 
basic system components have been developed and 
implemented. The capabilities of this new approach 
have been demonstrated on applications for the 
modeling and analysis of gas-pipeline nets and mixed 
electronical and mechanical systems.  
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